

Fig08_01

	P (bar)	T (deg. C)	v m³/kg	u kJ/kg	h kJ/kg	s kJ/(kgK)	X
1	40	86.91	.0010338	355.84	363.93	1.1565	Liq
2	40	478	.083603	3060.16	3394.63	7.0219	SH
3	.6	85.94	2.51352	2319.22	2469.97	7.0211	.92
4	.6	85.94	.0010331	359.79	359.86	1.1453	0

Consider a system similar to what the components that we've just analyzed in class.

How to address actual conditions?

- A) Measure/observe any two independent state properties and look up the rest.
- B) Use reasonable efficiency estimates for each device

$$\eta_P = \frac{\dot{W}_{\text{P-Ideal}}}{\dot{W}_{\text{P-Actual}}} \qquad \eta_T = \frac{\dot{W}_{\text{T-Actual}}}{\dot{W}_{\text{T-Ideal}}}$$

$$\eta_T = 0.90$$

$$\eta_P = 0.95$$

$$\eta_P = 0.95$$

	P (bar)	T (deg. C)	v m³/kg	u kJ/kg	h kJ/kg	s kJ/(kgK)	X
1	40	87.5			364.15		
2	40	478	.083603	3060.16	3394.63	7.0219	SH
3	.6	85.94	2.6228	2404.41	2562.44	7.27653	.96
4	.6	85.94	.0010331	359.79	359.86	1.1453	0

1.) Given state variables, determine Ideal and Actual performances

Performance?

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \qquad \eta_{Ideal} = \frac{(3394.63 - 2469.97) - (363.93 - 359.86)}{(3394.63 - 363.93)} = \frac{920.6}{3030.7} = 30.38\%$$

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \quad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\eta_{Max} = 1 - \frac{T_C}{T_H} = 1 - \frac{87.5 + 273.15}{478 + 273.15} = 1 - .48 = 52\%$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \quad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\dot{W}_{Net-Actual} = (3394.63 - 2562.44) - (364.15 - 359.86) \frac{kJ}{kg} = 827.9 \frac{kJ}{kg}$$

$$\dot{W}_{1000MW} = \dot{m} \frac{kg}{s} w \frac{kJ}{kg} = \dot{m} \frac{kg}{s} 827.9 \frac{kJ}{kg}$$

$$\frac{\dot{W}_{1000MW}}{w\frac{kJ}{kg}} = \dot{m}\frac{kg}{s} = \frac{1x10^6 \frac{kJ}{s}}{827.9 \frac{kJ}{kg}} = 1,208 \frac{kg}{s}$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements

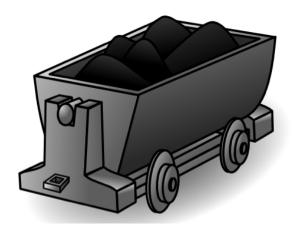
$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \qquad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\dot{Q}_{\text{In-Total}} = \dot{m} \frac{kg}{s} \dot{Q}_{\text{In}} \frac{kJ}{kg} = 1,208 \frac{kg}{s} 3030.5 \frac{kJ}{kg} = 3.661 \times 10^6 \frac{kJ}{s} Energy$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \quad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\dot{Q}_{\text{In-Total}} = \dot{m} \frac{kg}{s} \dot{Q}_{\text{In}} \frac{kJ}{kg} = 1,208 \frac{kg}{s} 3030.5 \frac{kJ}{kg} = 3.661 \times 10^6 \frac{kJ}{s} Energy$$


What about Boiler efficiency? Say 85% efficient implies:

$$\dot{Q}_{\text{In-Fuel}} = \frac{\dot{Q}_{\text{In-Total}}}{Efficiency} = \frac{3.661x10^6}{.85} kJ/_{S} = 4.306x10^6 kJ/_{S}$$
 Fuel Energy

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements
- 4.) How much Fuel will be required?

Assume Coal (the dominant fuel source) is used with a heating value of 5,500 kJ/kg coal.

$$\dot{m}_{Coal} = \dot{Q}_{In-Fuel} = \frac{4.306x10^6 \, kJ/s \, Fuel \, Energy}{5,500 \, \frac{kJ}{kg}} = 783^{\frac{kg}{s}} \, Fuel = 67.65x10^6 \, \frac{kg}{day}$$

A coal train car has a carry capacity of Approximately 100,000 kg/car

$$train\ cars = \dot{Q}_{\text{In-Fuel}} = \frac{\dot{m}_{Coal\ per\,day}}{m_{Coal\ per\,car}} = \frac{67.65 \times 10^6 \frac{kg}{day}}{100,000 \frac{kg}{car}} = 677 \frac{train\ cars}{day}$$

In 1999 the average train could pull 70 coal cars. Consequently, about 10 train deliveries per day are required to run the power plant!

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements
- 4.) Determine chemical balance

Fuel
$$\approx C_{12}H_{26}$$
 $Air \approx O_2 + (3.76 \frac{moles N_2}{mole O_2})N_2$

5.) Realistic chemical makeup of coal might be (on a mass chemical analysis)

Fuel
$$\approx 85.3\% C$$
, 14.1% H, 0.5% S, and 0.1% N₂

- 4.) Determine chemical balance $Fuel \approx C_{12}H_{26}$ $Air \approx O_2 + (3.76 \frac{moles N_2}{mole O_2})N_2$
- 5.) Realistic chemical makeup of coal might be (on a mass chemical analysis)

Fuel $\approx 85.3\% C$, 14.1% H, 0.5% S, and 0.1% N_2

6.) Consider 100 kg fuel and 125% theoretical air (realistic)

Fuel
$$\approx \frac{85.3kg}{12.011 \frac{kg}{kgmol}} C, \frac{14.1kg}{2\frac{kg}{kgmol}} H_2, \frac{0.5kg}{32.06 \frac{kg}{kgmol}} S, and \frac{0.1kg}{28.016 \frac{kg}{kgmol}} N_2$$

$$Molar \, Basis: 7.102 \, C + 6.994 H_2 + 0.0156 \, S + 0.0036 \, N_2 + 1.25 (X) O_2 + 1.25 (3.76) (X) N_2 = \\ \underline{\hspace{1cm} CO_2 + \underline{\hspace{1cm}} H_2 O + \underline{\hspace{1cm}} SO_2 + \underline{\hspace{1cm}} N_2}$$

6.) Consider 100 kg fuel and 125% theoretical air (realistic)

$$Fuel \approx \frac{85.3kg}{12.011 \frac{kg}{kgmol}} C, \frac{14.1kg}{2 \frac{kg}{kgmol}} H_2, \frac{0.5kg}{32.06 \frac{kg}{kgmol}} S, and \frac{0.1kg}{28.016 \frac{kg}{kgmol}} N_2$$

$$Molar \, Basis: 7.102 \, C + 6.994 \, H_2 + 0.0156 \, S + 0.0036 \, N_2 + \begin{bmatrix} 1.25 \end{bmatrix} (X) O_2 + \begin{bmatrix} 1.25 \end{bmatrix} (3.76)(X) N_2 = \\ \underline{CO_2} + \underline{M_2O} + \underline{SO_2} + \underline{M_2O} +$$

Theoretical O₂ Requirements:

$$= 7.102+6.994/2 + 0.0156)=10.614 \text{ moles}="X"$$

Molar Basis:

$$7.102C + 6.994H_2 + 0.0156S + 0.0036N_2 + 1.25(10.614)O_2 + (3.76)1.25(10.614)N_2 =$$

$$7.102CO_2 + 6.994H_2O + 0.0156SO_2 + 2.654O_2 + 49.89N_2$$

$$Molar \, Basis: 7.102\,C + 6.994H_2 + 0.0156\,S + 0.0036\,N_2 + \begin{bmatrix} 1.25 \end{bmatrix}(X)O_2 + \begin{bmatrix} 1.25 \end{bmatrix}(3.76)(X)N_2 = \\ CO_2 + \underbrace{\qquad \qquad} P_2O + \underbrace{\qquad \qquad} SO_2 + \underbrace{\qquad \qquad} N_2$$

$$= 7.102+6.994/2 + 0.0156)=10.614$$
 moles="X"

Molar Basis:

$$7.102C + 6.994H_2 + 0.0156S + 0.0036N_2 + 1.25(10.614)O_2 + (3.76)1.25(10.614)N_2 =$$

$$7.102CO_2 + 6.994H_2O + 0.0156SO_2 + 2.654O_2 + 49.89N_2$$

Determine the mass of CO₂ emitted:

$$(7.102 moles)(12.011 + 2*16)\frac{kg}{kgmol} = 312.57\frac{kg}{100 kg fuel}$$

$$Molar \, Basis: 7.102 \, C + 6.994 H_2 + 0.0156 \, S + 0.0036 \, N_2 + \begin{bmatrix} 1.25 \end{bmatrix} (X) O_2 + \begin{bmatrix} 1.25 \end{bmatrix} (3.76)(X) N_2 = \\ CO_2 + \underbrace{\qquad \qquad} P_2 O + \underbrace{\qquad \qquad} SO_2 + \underbrace{\qquad \qquad} N_2$$

$$= 7.102+6.994/2 + 0.0156)=10.614$$
 moles="X"

Molar Basis:

$$7.102C + 6.994H_2 + 0.0156S + 0.0036N_2 + 1.25(10.614)O_2 + (3.76)1.25(10.614)N_2 =$$

$$7.102CO_2 + 6.994H_2O + 0.0156SO_2 + 2.654O_2 + 49.89N_2$$

Determine the mass of CO₂ emitted:

$$(7.102 moles)(12.011 + 2*16)\frac{kg}{kgmol} = 312.57\frac{kg}{100 kg fuel}$$

How much do things weigh?

$$Molar \, Basis: 7.102 \, C + 6.994 H_2 + 0.0156 \, S + 0.0036 \, N_2 + \begin{bmatrix} 1.25 \end{bmatrix} (X) O_2 + \begin{bmatrix} 1.25 \end{bmatrix} (3.76)(X) N_2 = \\ CO_2 + \underbrace{\qquad \qquad} P_2 O + \underbrace{\qquad \qquad} SO_2 + \underbrace{\qquad \qquad} N_2$$

$$= 7.102+6.994/2 + 0.0156)=10.614$$
 moles="X"

Molar Basis:

$$7.102C + 6.994H_2 + 0.0156S + 0.0036N_2 + 1.25(10.614)O_2 + (3.76)1.25(10.614)N_2 =$$

$$7.102CO_2 + 6.994H_2O + 0.0156SO_2 + 2.654O_2 + 49.89N_2$$

Determine the mass of CO₂ emitted:

$$(7.102 moles)(12.011 + 2*16)\frac{kg}{kgmol} = 312.57\frac{kg}{100 kg fuel}$$

How much do things weigh? ~ 650 Blue Whales per Day!

$$Molar \, Basis: 7.102 \, C + 6.994 H_2 + 0.0156 \, S + 0.0036 \, N_2 + \begin{bmatrix} 1.25 \end{bmatrix} (X) O_2 + \begin{bmatrix} 1.25 \end{bmatrix} (3.76)(X) N_2 = \\ CO_2 + \underbrace{\qquad \qquad} P_2 O + \underbrace{\qquad \qquad} SO_2 + \underbrace{\qquad \qquad} N_2$$

Molar Basis:

$$7.102C + 6.994H_2 + 0.0156S + 0.0036N_2 + 1.25(10.614)O_2 + (3.76)1.25(10.614)N_2 =$$

$$7.102CO_2 + 6.994H_2O + 0.0156SO_2 + 2.654O_2 + 49.89N_2$$

Determine the mass of Sulfurous Acid H₂SO₃ emitted: (acid rain)

Molar Basis:

$$H_2O + SO_2 = H_2SO_3$$

 SO_2 is the limiting factor

$$(0.0156 moles)(2.016 + 32.06 + 3*16)\frac{kg}{kgmol} = 1.2804\frac{kg}{100 \, kg \, fuel}$$

Determine the mass of Sulfurous Acid H₂SO₃ emitted: (acid rain)

Molar Basis:

$$H_2O + SO_2 = H_2SO_3$$

 $H_2O + SO_2 = H_2SO_3$ SO₂ is the limiting factor

$$(0.0156 moles)(2.016 + 32.06 + 3*16)\frac{kg}{kgmol} = 1.2804\frac{kg}{100 \, kg \, fuel}$$

For our 1000 MW Power Plant using 67.65x10⁶ kg fuel/day

$$\dot{m}_{Coal} = \dot{Q}_{In-Fuel} = \frac{4.306x10^6 \, kJ/s \, Fuel \, Energy}{5,500 \, \frac{kJ}{kg}} = 783^{\frac{kg}{s}} \, Fuel = 67.65x10^6 \, \frac{kg}{day}$$

$$\left(1.2804 \frac{kg}{100 \, kg \, fuel} H_2 SO_3\right) \left(67.65 \times 10^4 \, \frac{100 kg \, fuel}{day}\right) = 866.19 \times 10^3 kg \, H_2 SO_3 \text{ released daily}$$

Determine the mass of Sulfurous Acid H₂SO₃ emitted: (acid rain)

Molar Basis:

$$H_2O + SO_2 = H_2SO_3$$

 $H_2O + SO_2 = H_2SO_3$ SO₂ is the limiting factor

$$(0.0156 moles)(2.016 + 32.06 + 3*16)\frac{kg}{kgmol} = 1.2804\frac{kg}{100 \, kg \, fuel}$$

For our 1000 MW Power Plant using 67.65x10⁶ kg fuel/day

$$\dot{m}_{Coal} = \dot{Q}_{In-Fuel} = \frac{4.306x10^6 \, kJ/s Fuel Energy}{5,500 \, \frac{kJ}{kg}} = 783^{\frac{kg}{s}} Fuel = 67.65x10^6 \, \frac{kg}{day}$$

$$\left(1.2804 \frac{kg}{100 \, kg \, fuel} H_2 SO_3\right) \left(67.65 \times 10^4 \, \frac{100 kg \, fuel}{day}\right) = 866.19 \times 10^3 kg \, H_2 SO_3 \text{ released daily}$$

Or, about 3 Blue Whales per day!