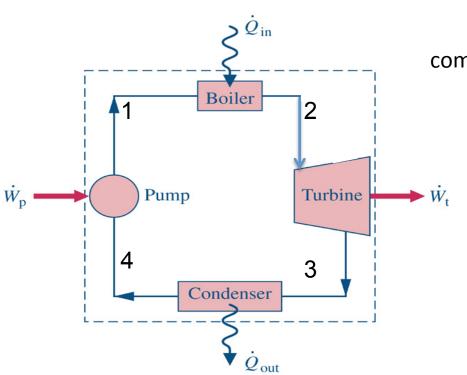


Fig08_01

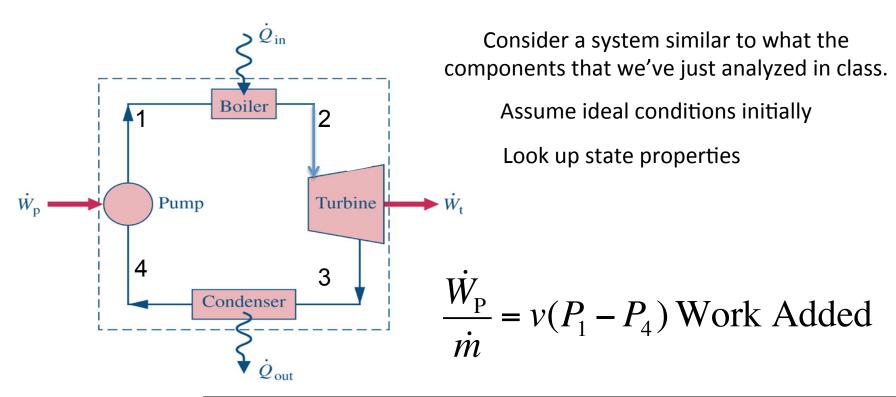


Consider a system similar to what the components that we've just analyzed in class.

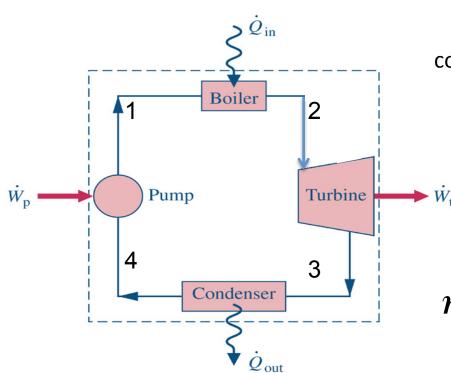
Assume ideal conditions initially

Look up state 2 properties

	P (bar)	T (deg. C)	w w w w w w w w w w w w w w w w w w w	u kJ/kg	h kJ/kg	s kJ/(kgK)	X
1							
2	40	478					
3	.6						.92
4							



	P (bar)	T (deg. C)	v m³/kg	u kJ/kg	h kJ/kg	s kJ/(kgK)	X
1	40	86.91	.0010338	355.84	363.93	1.1565	Liq
2	40	478	.083603	3060.16	3394.63	7.0219	SH
3	.6	85.94	2.51352	2319.22	2469.97	7.0211	.92
4	.6	85.94	.0010331	359.79	359.86	1.1453	0



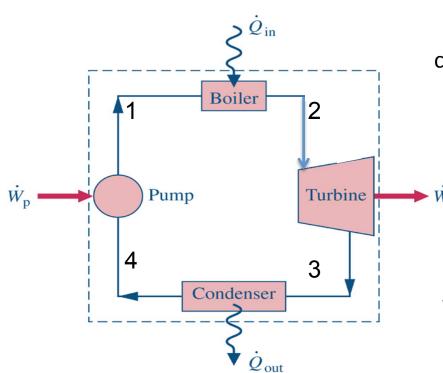
Consider a system similar to what the components that we've just analyzed in class.

How to address actual conditions?

- A) Measure/observe any two independent state properties and look up the rest.
- B) Use reasonable efficiency estimates for each device

$$\eta_P = \frac{\dot{W}_{\text{P-Ideal}}}{\dot{W}_{\text{P-Actual}}} \qquad \eta_T = \frac{\dot{W}_{\text{T-Actual}}}{\dot{W}_{\text{T-Ideal}}}$$

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	s kJ/(kgK)	X
1							
2	40	478					
3	.6					?	?
4							



Consider a system similar to what the components that we've just analyzed in class.

How to address actual conditions?

- A) Measure/observe any two independent state properties and look up the rest.
- B) Use reasonable efficiency estimates for each device

$$\eta_P = \frac{\dot{W}_{\text{P-Ideal}}}{\dot{W}_{\text{P-Actual}}} \qquad \eta_T = \frac{\dot{W}_{\text{T-Actual}}}{\dot{W}_{\text{T-Ideal}}}$$

$$\eta_T = 0.90$$

$$\eta_P = 0.95$$

$$\eta_P$$
 = 0.95

	P (bar)	T (deg. C)	w m³/kg	u kJ/kg	h kJ/kg	s kJ/(kgK)	X
1	40	87.5			364.15		
2	40	478	.083603	3060.16	3394.63	7.0219	SH
3	.6	85.94	2.6228	2404.41	2562.44	7.27653	.96
4	.6	85.94	.0010331	359.79	359.86	1.1453	0

Performance?

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \qquad \eta_{Ideal} = \frac{(3394.63 - 2469.97) - (363.93 - 359.86)}{(3394.63 - 363.93)} = \frac{920.6}{3030.7} = 30.38\%$$

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \quad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\eta_{Max} = 1 - \frac{T_C}{T_H} = 1 - \frac{87.5 + 273.15}{478 + 273.15} = 1 - .48 = 52\%$$

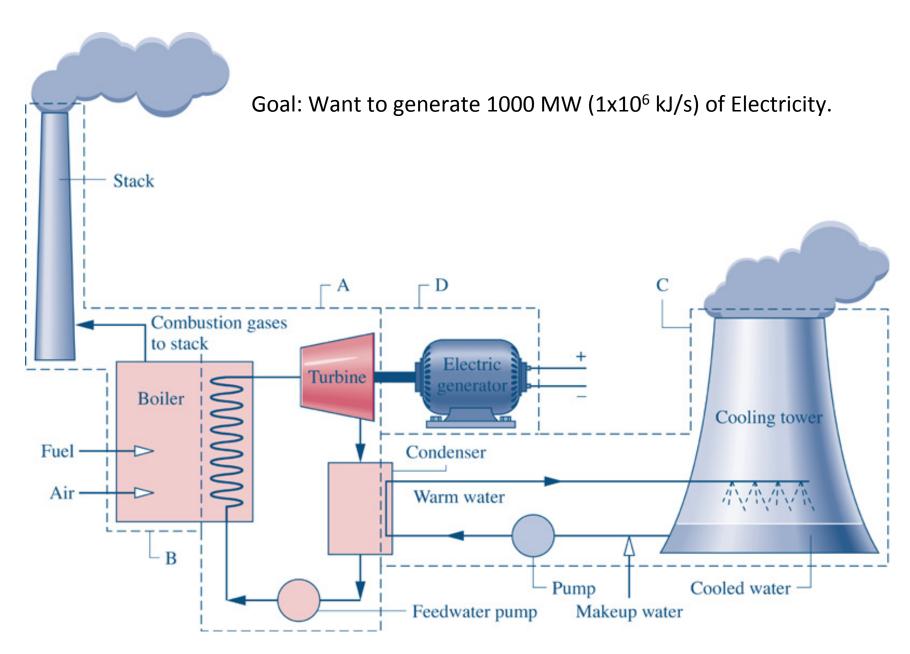


Fig08_01

1.) Given state variables, determine Ideal and Actual performances

Performance?

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \qquad \eta_{Ideal} = \frac{(3394.63 - 2469.97) - (363.93 - 359.86)}{(3394.63 - 363.93)} = \frac{920.6}{3030.7} = 30.38\%$$

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \quad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\eta_{Max} = 1 - \frac{T_C}{T_H} = 1 - \frac{87.5 + 273.15}{478 + 273.15} = 1 - .48 = 52\%$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \qquad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\dot{W}_{Net-Actual} = (3394.63 - 2562.44) - (364.15 - 359.86) \frac{kJ}{kg} = 827.9 \frac{kJ}{kg}$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \quad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\dot{W}_{Net-Actual} = (3394.63 - 2562.44) - (364.15 - 359.86) \frac{kJ}{kg} = 827.9 \frac{kJ}{kg}$$

$$\dot{W}_{1000MW} = \dot{m} \frac{kg}{s} w \frac{kJ}{kg} = \dot{m} \frac{kg}{s} 827.9 \frac{kJ}{kg}$$

$$\frac{\dot{W}_{1000MW}}{w\frac{kJ}{kg}} = \dot{m}\frac{kg}{s} = \frac{1x10^6 \frac{kJ}{s}}{827.9 \frac{kJ}{kg}} = 1,208 \frac{kg}{s}$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \qquad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \qquad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\dot{Q}_{\text{In-Total}} = \dot{m} \frac{kg}{s} \dot{Q}_{\text{In}} \frac{kJ}{kg} = 1,208 \frac{kg}{s} 3030.5 \frac{kJ}{kg} = 3.661 \times 10^6 \text{ kJ Energy}$$

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements

$$\eta = \frac{\dot{W}_{Net}}{\dot{Q}_{In}} = \frac{\dot{Q}_{In} - \dot{Q}_{out}}{\dot{Q}_{In}} \quad \eta_{Actual} = \frac{(3394.63 - 2562.44) - (364.15 - 359.86)}{(3394.63 - 364.15)} = \frac{827.9}{3030.5} = 27.32\%$$

$$\dot{Q}_{\text{In-Total}} = \dot{m} \frac{kg}{s} \dot{Q}_{\text{In}} \frac{kJ}{kg} = 1,208 \frac{kg}{s} 3030.5 \frac{kJ}{kg} = 3.661 \times 10^6 \frac{kJ}{s} Energy$$

What about Boiler efficiency? Say 85% efficient implies:

$$\dot{Q}_{\text{In-Fuel}} = \frac{\dot{Q}_{\text{In-Total}}}{Efficiency} = \frac{3.661x10^6}{.85} kJ/_{S} = 4.306x10^6 kJ/_{S}$$
 Fuel Energy

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements
- 4.) Determine chemical balance

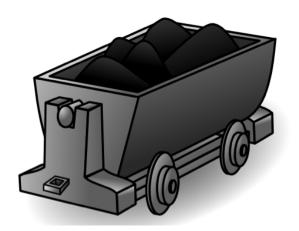
- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements
- 4.) Determine chemical balance

Assume Coal (the dominant fuel source) is used with a heating value of 5,500 kJ/kg coal.

- 1.) Given state variables, determine Ideal and Actual performances
- 2.) Determine the mass flow rate for 1000 MW generation
- 3.) Determine Boiler fuel requirements
- 4.) Determine chemical balance

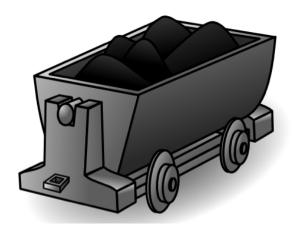
Assume Coal (the dominant fuel source) is used with a heating value of 5,500 kJ/kg coal.

$$\dot{m}_{Coal} = \dot{Q}_{In-Fuel} = \frac{4.306x10^6 \, kJ/s \, Fuel \, Energy}{5,500 \, \frac{kJ}{kg}} = 783^{\frac{kg}{s}} \, Fuel = 67.65x10^6 \, \frac{kg}{day}$$



A coal train car has a carry capacity of Approximately 100,000 kg/car

train cars =
$$\dot{Q}_{\text{In-Fuel}} = \frac{\dot{m}_{Coal \, per \, day}}{m_{Coal \, per \, car}} = \frac{67.65 \times 10^6 \frac{kg}{day}}{100,000 \frac{kg}{car}} = 677 \frac{train \, cars}{day}$$



A coal train car has a carry capacity of Approximately 100,000 kg/car

$$train\ cars = \dot{Q}_{\text{In-Fuel}} = \frac{\dot{m}_{Coal\ per\,day}}{m_{Coal\ per\,car}} = \frac{67.65 \times 10^6 \frac{kg}{day}}{100,000 \frac{kg}{car}} = 677 \frac{train\ cars}{day}$$

In 1999 the average train could pull 70 coal cars. Consequently, about 10 train deliveries per day are required to run the power plant!