
Chapter 5 
The Second Law of 
Thermodynamics 

(continued) 



Second Law of Thermodynamics 

Alternative statements of the second law,  

Clausius Statement  
of the Second Law 

It is impossible for any 
system to operate in such 
a way that the sole result 
would be an energy 
transfer by heat from a 
cooler to a hotter body. 



Second Law of Thermodynamics 

Alternative statements of the second law,  

Kelvin-Planck Statement 
of the Second Law 

It is impossible for any 
system to operate in a 
thermodynamic cycle and 
deliver a net amount of 
energy by work to its 
surroundings while receiving 
energy by heat transfer from a 
single thermal reservoir. 

NO! 



Aspects of the  
Second Law of Thermodynamics 

► From conservation of mass and energy 
principles, (i.e. 1st Law of Thermodynamics) 
► mass and energy cannot be created or destroyed. 

► For a process, conservation of mass and 
energy principles indicate the disposition of 
mass and energy but do not infer whether the 
process can actually occur.   
► The second law of thermodynamics 
provides the guiding principle for whether a 
process can occur. 



Second Law of Thermodynamics 
Alternative Statements 

► Clausius Statement 
► Kelvin-Planck Statement 
► Entropy Statement 

There is no simple statement that captures all 
aspects of the second law.  Several 
alternative formulations of the second law are 
found in the technical literature.  Three 
prominent ones are:   

It is impossible for any system to operate in a way  
      that entropy is destroyed. 



Irreversible and Reversible 
Processes 

► within the system, or 
► with its surroundings (usually the 

immediate surroundings), or 
► both. 

During a process (i.e. a change from State A 
to State B) of a system, irreversibilities 
may be present: 



Applications to Power Cycles Interacting 
with Two Thermal Reservoirs  

For a system undergoing a power cycle while 
communicating thermally with two thermal 
reservoirs, a hot reservoir and a cold reservoir, 
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the thermal efficiency of any such cycle is 



By applying the Kelvin-Planck statement of the 
second law, Eq. 5.3, three conclusions can be drawn: 

1.  The value of the thermal efficiency must be less than 
100%. 

2.  The thermal efficiency of an irreversible power cycle is 
always less than the thermal efficiency of a reversible 
power cycle for the same two thermal reservoirs, and 

3.  All reversible power cycles operating between the same 
two thermal reservoirs have the same thermal efficiency. 
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Applications to Refrigeration and Heat Pump 
Cycles Interacting with Two Thermal Reservoirs  

For a system undergoing a refrigeration cycle or heat 
pump cycle while communicating thermally with two 
thermal reservoirs, a hot reservoir and a cold 
reservoir, 

(Eq. 5.5) 
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the coefficient of performance 
for the refrigeration cycle is 

(Eq. 5.6) 
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and for the heat pump cycle is 



By applying the Kelvin-Planck statement of the second law, 
Eq. 5.3, three conclusions can be drawn: 
1.  For a refrigeration effect to occur a net work input Wcycle is 

required.  Accordingly, the coefficient of performance must 
be finite in value. 

2.  The coefficient of performance of an irreversible 
refrigeration cycle is always less than the coefficient of 
performance of a reversible refrigeration cycle when each 
operates between the same two thermal reservoirs. 

3.  All reversible refrigeration cycles operating between the 
same two thermal reservoirs have the same coefficient 
of performance. 
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Kelvin Temperature Scale  
Consider systems undergoing a power cycle and a 
refrigeration or heat pump cycle, each while 
exchanging energy by heat transfer with hot and cold 
reservoirs: 
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The Kelvin temperature is defined so that 



Maximum Performance Measures for Cycles 
Operating between Two Thermal Reservoirs 

It follows that the maximum theoretical thermal efficiency and 
coefficients of performance in these cases are achieved only 
by reversible cycles.  Using Eq. 5.7 in Eqs. 5.4, 5.5, and 5.6, 
we get respectively: 
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where TH and TC must be on the Kelvin or Rankine scale. 



Example:  Power Cycle Analysis 

    A system undergoes a power cycle while 
receiving 1000 kJ by heat transfer from a 
thermal reservoir at a temperature of 500 K 
and discharging 600 kJ by heat transfer to a 
thermal reservoir at (a) 200 K, (b) 300 K, (c) 
400 K.  For each case, determine whether 
the cycle operates irreversibly, operates 
reversibly, or is impossible.   

Solution:  To determine the nature of the cycle, compare 
actual cycle performance (η) to maximum theoretical cycle 
performance (ηmax) calculated from Eq. 5.9 
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Example:  Power Cycle Analysis 
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Actual Performance:  Calculate η using  
the heat  
transfers: 

Maximum Theoretical Performance:   
Calculate ηmax from Eq. 5.9 and compare  
to η: 
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Reversibly 0.4 = 0.4 

Impossible 0.4 > 0.2 

Irreversibly 0.4 < 0.6 
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Carnot Cycle 

► The Carnot cycle provides a specific 
example of a reversible cycle that operates 
between two thermal reservoirs.  Other 
examples are provided in Chapter 9: the 
Ericsson and Stirling cycles. 

► In a Carnot cycle, the system executing the 
cycle undergoes a series of four internally 
reversible processes:  two adiabatic 
processes alternated with two isothermal 
processes. 



Carnot Power Cycles  

The p-v diagram and schematic of a gas in a piston-cylinder 
assembly executing a Carnot cycle are shown below: 



Carnot Power Cycles  
The p-v diagram and schematic of water executing a Carnot 
cycle through four interconnected components are shown 
below: 

In each of these cases the thermal efficiency is given by 

(Eq. 5.9) 
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Carnot Refrigeration and Heat Pump Cycles 

► If a Carnot power cycle is operated in the opposite 
direction, the magnitudes of all energy transfers 
remain the same but the energy transfers are 
oppositely directed.  

► Such a cycle may be regarded as a Carnot 
refrigeration or heat pump cycle for which the 
coefficient of performance is given, respectively, by 

(Eq. 5.10) 
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Clausius Inequality 

► The Clausius inequality considered next 
provides the basis for developing the 
entropy concept in Chapter 6. 

► The Clausius inequality is applicable to any 
cycle without regard for the body, or 
bodies, from which the system undergoing 
a cycle receives energy by heat transfer or 
to which the system rejects energy by heat 
transfer.  Such bodies need not be thermal 
reservoirs.  



Clausius Inequality 
► The Clausius inequality is developed from 

the Kelvin-Planck statement of the second 
law and can be expressed as: 
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where 

∫ indicates integral is to be performed over all parts of the 
boundary and over the entire cycle. 

subscript indicates integrand is evaluated at the boundary 
of the system executing the cycle. 

b 



Clausius Inequality 
► The Clausius inequality is developed from 

the Kelvin-Planck statement of the second 
law and can be expressed as: 
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The nature of the cycle executed is indicated by the value 
of σcycle: 

σcycle = 0  no irreversibilities present within the system 
σcycle > 0  irreversibilities present within the system 
σcycle < 0  impossible 

Eq. 
5.14 



Example:  Use of Clausius Inequality 

    A system undergoes a cycle while receiving 1000 
kJ by heat transfer at a temperature of 500 K and 
discharging 600 kJ by heat transfer at (a) 200 K, (b) 
300 K, (c) 400 K.  Using Eqs. 5.13 and 5.14, what 
is the nature of the cycle in each of these cases?   

Solution:  To determine the nature of the cycle, 
perform the cyclic integral of Eq. 5.13 to each case 
and apply Eq. 5.14 to draw a conclusion about the 
nature of each cycle. 



Example:  Use of Clausius Inequality 

Applying Eq. 5.13 to each cycle: cycle
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(b)  kJ/K 0
K 300
kJ 600

K 500
kJ 1000

cycle =−=−σ σcycle = 0 kJ/K = 0 

(a)  kJ/K 1
K 200
kJ 600

K 500
kJ 1000

cycle −=−=−σ σcycle = +1 kJ/K > 0 

Irreversibilities present within system 

No irreversibilities present within system 

(c)  kJ/K 5.0
K 400
kJ 600

K 500
kJ 1000

cycle =−=−σ σcycle = –0.5 kJ/K < 0 

Impossible 


