Chapter 4

Control Volume Analysis Using Energy (continued)

Learning Outcomes

- Distinguish between steady-state and transient analysis,
- Distinguishing between mass flow rate and volumetric flow rate.
- Apply mass and energy balances to control volumes.
- Develop appropriate engineering models to analyze nozzles, turbines, compressors, heat exchangers, throttling devices.
- Use property data in control volume analysis appropriately.

Energy Rate Balance

$$\frac{dE_{\rm cv}}{dt} = \dot{Q}_{\rm cv} - \dot{W}_{\rm cv} + \dot{m}_i(h_i + \frac{V_i^2}{2} + gz_i) - \dot{m}_e(h_e + \frac{V_e^2}{2} + gz_e)$$

Assume ideal conditions initially

Look up state 2 properties

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1		150				
2	40	500				
3	.6					.92
4						

TABLE A-3

16625

Conversions: Properties of Saturated Water (Liquid-Vapor): Pressure Table

Pr 1	essure Conve bar = 0.1 MP = 10 ² kP	a a	Specific m ³ /	Volume /kg	Internal kJ/	Energy kg		Enthalpy kJ/kg		Entr kJ/kj	opy g·K	
	- 10		Sat.	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.	Sat.	
No.	Press.	Temp.	Liquid	Vapor	Liquid	Vapor	Liquid	Evap.	Vapor	Liquid	Vapor	Press.
	bar	°C	$v_{\rm f} \times 10^3$	$v_{\rm g}$	U _f	ug	h _f	h _{fg}	hg	S _f	S _g	bar
And the second	0.04	28.96	1.0040	34.800	121.45	2415.2	121.46	2432.9	2554.4	0.4226	8.4746	0.04
10000	0.06	36.16	1.0064	23.739	151.53	2425.0	151.53	2415.9	2567.4	0.5210	8.3304	0.06
No. and	0.08	41.51	1.0084	18.103	173.87	2432.2	173.88	2403.1	2577.0	0.5926	8.2287	0.08
107270	0.10	45.81	1.0102	14.674	191.82	2437.9	191.83	2392.8	2584.7	0.6493	8.1502	0.10
2.20.20.20	0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7	0.8320	7.9085	0.20
	0.30	69.10	1.0223	5.229	289.20	2468.4	289.23	2336.1	2625.3	0.9439	7.7686	0.30
TNE:	0.40	75.87	1.0265	3.993	317.53	2477.0	317.58	2319.2	2636.8	1.0259	7.6700	0.40
102.02	0.50	81.33	1.0300	3.240	340.44	2483.9	340.49	2305.4	2645.9	1.0910	7 5939	0.50
	0.60	85.94	1.0331	2.732	359.79	2489.6	359.86	2293.6	2653.5	1.1453	7.5320	0.60
Surger State	0.70	89.95	1.0360	2.365	376.63	2494.5	376.70	2283.3	2660.0	1.1919	7.4797	0.70

TABLE A-4

(Continued)	١
(commueu)	3

					0
	 a	= 20.0 ba	r = 2.0 M	Pa	
	<i>,</i>	$(T_{sat} = :$	212.42°C)		and the second se
Sat.	0.0996	2600.3	2799.5	6.3409	S
240	0.1085	2659.6	2876.5	6.4952	2
280	0.1200	2736.4	2976.4	6.6828	3
220	0 1208	3807.0	2060 5	68452	Multimation L
320	0.1308	2007.9	3009.5	0.0452	
360	0.1411	2877.0	3159.3	6.9917	4
400	0.1512	2945.2	3247.6	7.1271	4
640	0.1611	3013.4	3335.5	7.2540	5
440	0.1011	504514	5555	754-	E E
500	0.1757	3110.2	3407.0	/-431/	2 D
540	0.1853	3185.6	3556.1	7.5434	6
600	0.1996	3290.9	3690.1	7.7024	6
640	0.2091	3362.2	3780.4	7.8035	7
700	0.2232	3470.9	3917.4	7.9487	夏 7
-		t transfi G i			ENVIRONE A

(con	unueu j			*****
T	v	и	h	5
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	p	= 40 bar	= 4.0 MP	a
	***********	$(T_{\rm sat} = 2$	250.4°C)	
Sat.	0.04978	2602.3	2801.4	6.0701
280	0.05546	2680.0	2901.8	6.2568
320	0.06199	2767.4	3015.4	6.4553
360	0.06788	2845.7	3117.2	6.6215
400	0.07341	2919.9	3213.6	6.7690
440	0.07872	2992.2	3307.1	6.9041
500	0.08643	3099.5	3445-3	7.0901
540	0.09145	3171.1	3536.9	7.2056
600	0.09885	3279.1	3674.4	7.3688
640	0.1037	3351.8	3766.6	7.4720
700	0.1110	3462.1	3905.9	7.6198
740	0.1157	3536.6	3999.6	7.7141

(Con	tinued)							
T	v	u	h	5				
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K				
	p	• == 40 bar	= 4.0 MPa	3				
	$(T_{\rm sat} = 250.4^{\circ}{\rm C})$							
Sat.	0.04978	2602.3	2801.4	6.0701				
280	0.05546	2680.0	2901.8	6.2568				
320	0.06199	2767.4	3015.4	6.4553				
360	0.06788	2845.7	3117.2	6.6215				
400	0.07341	2919.9	3213.6	6.7690				
440	0.07872	2992.2	3307.1	6.9041				
500	0.08643	3099.5	3445-3	7.0901				
540	0.09145	3171.1	3536.9	7.2056				
600	0.09885	3279.1	3674.4	7.3688				
640	0.1037	3351.8	3766.6	7.4720				
700	0.1110	3462.1	3905.9	7.6198				
740	0.1157	3536.6	3999.6	7.7141				

Assume ideal conditions initially

Look up state 2 properties

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1		150				
2	40	500	.08643	3099.5	3445.3	NA
3	.6					.92
4						

Turbines

Turbine: a device in which power is developed as a result of a gas or liquid passing through a set of blades attached to a shaft free to rotate.

Turbine Modeling

$$0 = \dot{Q}_{cv} - \dot{W}_{cv} + \dot{m} \left[(h_1 - h_2) + \frac{(V_1^2 - V_2^2)}{2} + g(z_1 - z_2) \right] \begin{pmatrix} \mathbf{Eq.} \\ \mathbf{4.20a} \end{pmatrix}$$

- ► If the change in kinetic energy of flowing matter is negligible, $\frac{1}{2}(V_1^2 V_2^2)$ drops out.
- ► If the change in potential energy of flowing matter is negligible, $g(z_1 z_2)$ drops out.
- If the heat transfer with surroundings is negligible, \dot{Q}_{cv} drops out.

$$\dot{W}_{\rm cv}=\dot{m}(h_1-h_2)$$

Assume ideal conditions initially

Look up state 2 properties

Look up state 3 properties in order to determine W of Turbine

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1		150				
2	40	500	.08643	3099.5	3445.3	NA
3	.6					.92
4						

	P	roperties o	f Saturated V	vater (Liqu	id-vapor)	: Pressure	ladie			
$essure Conve}bar = 0.1 MP= 102 kP$	bar = 0.1 MPa		Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg			
Press. bar	Temp. °C	Sat. Liquid $v_{ m f} imes 10^3$	Sat. Vapor v _g	Sat. Liquid _{Uf}	Sat. Vapor u _g	Sat. Liquid h _f	Evap. h _{fg}	Sat. Vapor h _g		
0.04	28.96	1.0040	34.800	121.45	2415.2	121.46	2432.9	2554.4		
0.06	36.16	1.0064	23.739	151.53	2425.0	151.53	2415.9	2567.4		
0.08	41.51	1.0084	18.103	173.87	2432.2	173.88	2403.1	2577.0		
0.10	45.81	1.0102	14.674	191.82	2437.9	191.83	2392.8	2584.7		
0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7		
0.30	69.10	1.0223	5.229	289.20	2468.4	289.23	2336.1	2625.3		
0.40	75.87	1.0265	3.993	317.53	2477.0	317.58	2319.2	2636.8		
0.50	81.33	1.0300	3.240	340.44	2483.9	340.49	2305.4	2645.9		
0.60	85.94	1.0331	2.732	359.79	2489.6	359.86	2293.6	2653.5		
0.70	89.95	1.0360	2.365	376.63	2494.5	376.70	2283.3	2000.0		

 $v_3 = v_f + x(v_g - v_f)$ $v_3 = .0010331 + .92(2.732 - .0010331) = 2.514$ $h_3 = h_f + x(h_{fg}) = 359.9 + .92(2293.6) = 2470$ $u_3 = 359.8 + .92(2489.6 - 359.8) = 2319.2$

Assume ideal conditions initially

Look up state 2 properties

Look up state 3 properties in order to determine W of Turbine

$$_{\rm w} = \frac{\dot{W}_{cv}}{\dot{m}} = (h_2 - h_3) = 975.3 \frac{kJ}{kg}$$

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1		150				
2	40	500	.08643	3099.5	3445.3	NA
3	.6	85.94	2.514	2319.2	2470	.92
4						

Assume ideal conditions initially

Look up state 4 properties

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1		150				
2	40	500	.08643	3099.5	3445.3	NA
3	.6	85.94	2.514	2319.2	2470	.92
4						

- Direct contact: A mixing chamber in which hot and cold streams are mixed directly.
- Tube-within-a-tube counterflow: A gas or liquid stream is separated from another gas or liquid by a wall through which energy is conducted. Heat transfer occurs from the hot stream to the cold stream as the streams flow in opposite directions.

$$0 = \dot{Q}_{cv} - \dot{W}_{cv} + \sum_{i} \dot{m} (h_i + \frac{V_i^2}{2} + gz_i) - \sum_{e} \dot{m} (h_e + \frac{V_e^2}{2} + gz_e)$$

$$\dot{m}_3(h_4 - h_3) = \dot{m}_1(h_1 - h_2)$$
 $h_4 = h_3 + \frac{\dot{m}_1}{\dot{m}_3}(h_1 - h_2)$

$$y_{\rm cv} = \frac{Q_{\rm cv}}{\dot{m}} = (h_4 - h_3)$$

TABLEAS

	P	roperties o	f Saturated V	Vater (Liqu	id–Vapor)	: Pressure	Table			
bar = 0.1 MPa		Specific Volume		Internal	Internal Energy		Enthalpy			
		m ³ /kg		kJ/	kJ/kg		kJ/kg			
Press. bar	Temp. °C	Sat. Liquid $v_{ m f} imes$ 10 3	Sat. Vapor v _g	Sat. Liquid _{Uf}	Sat. Vapor u _g	Sat. Liquid <i>h</i> f	Evap. h _{fg}	Sat. Vapor h _g		
0.04	28.96	1.0040	34.800	121.45	2415.2	121.46	2432.9	2554.4		
0.06	36.16	1.0064	23.739	151.53	2425.0	151.53	2415.9	2567.4		
0.08 0.10 0.20	41.51 45.81 60.06	1.0102 1.0172	14.674 7.649	191.82 251.38	2432.2 2437.9 2456.7	191.83 251.40	2392.8 2358.3	2584.7 2609.7		
0.30	69.10	1.0223	5.229	289.20	2468.4	289.23	2336.1	2625.3		
0.40	75.87	1.0265	3.993	317.53	2477.0	317.58	2319.2	2636.8		
0.50	81.33	1.0300	3.240	340.44	2483.9	340.49	2305.4	2645.9		
0.60	85.94	1.0331	2.732	359 . 79	2489.6	359.86	2293.6	2653.5		
	89.95	1.0360	2.365	376.63	2494.5	376.70	2283.3	2660.0		

the of Cotympted Water (Liquid Vener), Drogguro Table п.

$$v_4 = v_f = .0010331$$

$$h_4 = h_f = 359.9$$
 $u_4 = u_f = 359.79$

Assume ideal conditions initially

Look up state 4 properties

Now one can solve for Q rejected

$$\dot{q}_{\rm cv} = \frac{\dot{Q}_{\rm cv}}{\dot{m}} = (h_4 - h_3) = -2110 \frac{kJ}{kg}$$

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1		150				
2	40	500	.08643	3099.5	3445.3	NA
3	.6	85.94	2.514	2319.2	2470	.92
4	.6	85.94	.0010331	359.79	359.86	0

Inlet Rotor Stator Outlet Inlet (b) Axial flow

Outlet Inpeller Driveshaft

Compressors and Pumps

• Compressors and Pumps: devices in which work is done on the substance flowing through them to change the state of the substance, typically to increase the pressure and/or elevation.

- Compressor: substance is gas
- Pump: substance is liquid

Compressor and Pump Modeling

$$0 = \dot{Q}_{cv} - \dot{W}_{cv} + \dot{m} \left[(h_1 - h_2) + \frac{(V_1^2 - V_2^2)}{2} + g(z_1 - z_2) \right] \begin{pmatrix} \mathbf{Eq.} \\ \mathbf{4.20a} \end{pmatrix}$$

- ▶ If the change in kinetic energy of flowing matter is negligible, $\frac{1}{2}(V_1^2 V_2^2)$ drops out.
- ► If the change in potential energy of flowing matter is negligible, $g(z_1 z_2)$ drops out.
- If the heat transfer with surroundings is negligible, \dot{Q}_{cv} drops out.

$$\dot{W}_{\rm cv}=\dot{m}(h_1-h_2)$$

Assume ideal conditions initially

Look up state 1 properties

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1	40	150				0
2	40	500	.08643	3099.5	3445.3	NA
3	.6	85.94	2.514	2319.2	2470	.92
4	.6	85.94	.0010331	359.79	359.86	0

TABLE A-2

(Continued)

Temp.	Press. bar	Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg		
		Sat. Liquid $v_f \times 10^3$	Sat. Vapor ve	Sat. Liquid <i>u</i> f	Sat. Vapor u _g	Sat. Liquid h _f	Evap. h _{fg}	Sat. Vapor h _g
100	1.014	1.0435	1.673	418.94	2506.5	419.04	2257.0	2676.1
110	1.433	1.0516	1.210	461.14	2518.1	461.30	2230.2	2691.5
120*	1.985	1.0603	0.8919	503.50	2529.3	503.71	2202.6	2706.3
130	2.701	1.0697	0.6685	546.02	2539.9	546.31	2174.2	2720.5
140	3.613	1.0797	0.5089	588.74	2550.0	589.13	2144.7	2733.9
150	4.758	1.0905	0.3928	631.68	2559.5	632.20	2114.3	2746.5
160	6.178	1.1020	0.3071	674.86	2568.4	675.55	2082.6	2758.1
170	7.917	1.1143	0.2428	718.33	2576.5	719.21	2049.5	2768.7

	P (bar)	T (deg. C)	w m ³ /kg	u kJ/kg	h kJ/kg	X
1	40	150	.0010905	631.68	632.2	0
2	40	500	.08643	3099.5	3445.3	NA
3	.6	85.94	2.514	2319.2	2470	.92
4	.6	85.94	.0010331	359.79	359.86	0

<u>Heat Exchangers – Boilers too</u>

Power Cycle

Applying the closed system energy balance to each cycle of operation,

$$\Delta E_{\text{cycle}} = Q_{\text{cycle}} - W_{\text{cycle}} \qquad \text{(Eq. 2.39)}$$

Since the system returns to its initial state after each cycle, there is no net change in its energy: $\Delta E_{cycle} = 0$, and the energy balance reduces to give

$$W_{\rm cycle} = Q_{\rm in} - Q_{\rm out}$$
 (Eq. 2.41)

In words, the net energy transfer by work from the system equals the net energy transfer by heat to the system, each per cycle of operation.

Power Cycle

► The performance of a system undergoing a power cycle is evaluated on an energy basis in terms of the extent to which the energy added by heat, Q_{in} , is converted to a net work output, W_{cycle} . This is represented by the ratio

$$\eta = \frac{W_{\text{cycle}}}{Q_{\text{in}}} = \frac{W_{turbine} - W_{pump}}{Q_{boiler}} = \frac{975.3 - 272.3}{2813} = 25\%$$

called the thermal efficiency.

$$\eta = \frac{Q_{\text{in}} - Q_{\text{out}}}{Q_{\text{in}}} = 1 - \frac{Q_{\text{condenser}}}{Q_{\text{boiler}}} = 1 - \frac{2110}{2813} = 25\%$$