Chapter 3

Evaluating Properties

Temperature Pressure

Temperature Pressure specific volume

Temperature Pressure specific volume internal energy

Temperature Pressure specific volume internal energy enthalpy

Temperature Pressure specific volume internal energy enthalpy entropy

Learning Outcomes

Demonstrate understanding of key concepts . . . including phase and pure substance, state principle for simple compressible systems, *p-v and T-v* graphs, saturation temperature and saturation pressure, two-phase liquid-vapor mixture, quality, enthalpy, and specific heats

Learning Outcomes

Demonstrate understanding of key concepts . . . including phase and pure substance, state principle for simple compressible systems, *p-v and T-v* graphs, saturation temperature and saturation pressure, two-phase liquid-vapor mixture, quality, enthalpy, and specific heats.

Apply energy balance with property data.

Learning Outcomes, cont.

Locate states on *p-v*, *T-v* and other thermodynamic diagrams *T-h*, for example.

Learning Outcomes, cont.

Locate states on *p-v*, *T-v* and other thermodynamic diagrams *T-h*, for example.
Retrieve property data from Tables A-1 through A-23.

Learning Outcomes, cont.

- Locate states on *p-v*, *T-v* and other thermodynamic diagrams *T-h*, for example.
- Retrieve property data from Tables A-1 through A-23.
- Apply the ideal gas model for thermodynamic analysis, including determining when use of the model is warranted.

<u>Phase</u>

- A quantity of matter that is homogeneous throughout in both chemical composition and physical structure.
- Homogeneity in physical structure means that the matter is all *solid*, or all *liquid*, or all *vapor* (gas).

<u>Phase</u>

A quantity of matter that is homogeneous throughout in both chemical composition and physical structure.

Homogeneity in physical structure means that the matter is all *solid*, or all *liquid*, or all *vapor* (gas).

Examples:

- The air we breathe is a gas phase consisting of a mixture of different gases.
- Drinking water with ice cubes contains two phases of water: liquid and solid.
- Vinegar and olive oil salad dressing contains two different liquid phases.

Pure Substance

- A substance that is uniform and invariable in chemical composition.
- A pure substance can exist in more than one phase, but its chemical composition must be the same in each phase.

Pure Substance

- A substance that is uniform and invariable in chemical composition.
- A pure substance can exist in more than one phase, but its chemical composition must be the same in each phase.

Examples:

- Drinking water with ice cubes can be regarded as a pure substance because each phase has the same composition.
- A fuel-air mixture in the cylinder of an automobile engine can be regarded as a pure substance until ignition occurs.

State Principle for Simple Compressible Systems

- Not all of the relevant intensive properties are independent.
 - Some are related by definitions for example, density is 1/v and specific enthalpy is u + pv (Eq. 3.4).

State Principle for Simple Compressible Systems

- Not all of the relevant intensive properties are independent.
 - Some are related by definitions for example, density is 1/v and specific enthalpy is u + pv (Eq. 3.4).
 - Others are related through expressions developed from experimental data.
 - Some intensive properties may be independent in a single phase, but become dependent when there is more than one phase present.