Chapter 3

Evaluating Properties



Learning Outcomes

» Demonstrate understanding of key
concepts . . . including phase and pure
substance, state principle for simple
compressible systems, p-v and T-v graphs,
saturation temperature and saturation
pressure, two-phase liquid-vapor mixture,
quality, enthalpy, and specific heats.

» Apply energy balance with property data.



Learning Outcomes, cont.

» | ocate states on p-v, T-v and other
thermodynamic diagrams 7-/1, for example.

» Retrieve property data from Tables A-1
through A-23.

» Apply the ideal gas model for thermo-
dynamic analysis, including determining
when use of the model is warranted.



Phase

» A quantity of matter that is homogeneous
throughout in both chemical composition and
physical structure.

» Homogeneity in physical structure means that
the matter is all solid, or all liquid, or all vapor
(gas).

» Examples:

» The air we breathe is a gas phase consisting of a
mixture of different gases.

» Drinking water with ice cubes contains two phases of
water: liquid and solid.

» \inegar and olive oil salad dressing contains two
different liquid phases.



Pure Substance

» A substance that is uniform and invariable
In chemical composition.

» A pure substance can exist in more than
one phase, but its chemical composition
must be the same in each phase.

» Examples:

» Drinking water with ice cubes can be regarded
as a pure substance because each phase has
the same composition.

» A fuel-air mixture in the cylinder of an
automobile engine can be regarded as a pure
substance until ignition occurs.




State Principle for
Simple Compressible Systems

» Not all of the relevant intensive properties
are independent.

» Some are related by definitions — for example,
density is 1/v and specific enthalpy is u + pv
(Eq. 3.4).

» Others are related through expressions
developed from experimental data.

» Some intensive properties may be independent
In a single phase, but become dependent when
there is more than one phase present.



State Principle for
Simple Compressible Systems

» For a simple compressible system, values
for any two independent intensive properties
determine the values of all other intensive
properties. This is the state principle for
simple compressible systems.

» Among alternative sets of two independent
iIntensive properties, (7, v) and (p, v) are

frequently convenient. We soon show that pressure
and temperature are not always an independent set.



Phase Change

» Consider a closed system consisting of a unit mass of
liguid water at 20°C contained within a piston-cylinder
assembly.

» This state is represented by I (highlighted by the blue
dot).

» Liquid states such as this, where temperature is lower
than the saturation temperature corresponding to the
pressure at the state, are called compressed liquid
states. pe= 2209 MPa (3204 ffin)
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Saturated Liquid

» As the system is heated at constant pressure, the
temperature increases considerably while the specific
volume increases slightly.

» Eventually, the system is brought to the state
represented by f (highlighted by the blue dot).

» This is the saturated liquid state corresponding to
the specified pressure.

P = 22.09 MPa (3204 Ibf/in.?)
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Two-Phase Liquid-Vapor Mixture

» \When the system is at the saturated liquid state,
additional heat transfer at fixed pressure results in the
formation of vapor without change in temperature but with

a considerable increase in specific volume as shown by
movement of the blue dot.

» With additional heating at fixed pressure, more vapor is

formed and specific volume increases further as shown by
additional movement of the blue dot.

» At these states,

P = 22.09 MPa (3204 Ibf/in.?)
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the system now I,
consists of a ] . | 52
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. . O - Liquid-vapor
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Two-Phase Liquid-Vapor Mixture

» \WWhen a mixture of liquid and vapor exists in equilibrium,
the liquid phase is a saturated liquid and the vapor phase
IS a saturated vapor.

» For a two-phase liquid-vapor mixture, the ratio of the
mass of vapor present to the total mass of the mixture is
its quality, x.

_ mvapor
» The value of T Miiquid * Myapor
quality ranges from
0 to 1.
» At saturated liquid ] :
states, x = 0. , ,
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100°C (212°F)
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Saturated Vapor

» If the system is heated further until the last bit of
liquid has vaporized it is brought to the saturated
vapor state.

» This state is represented by g (highlighted by the blue
dot).

» At saturated vapor states, x = 1.

p. = 22.09 MPa (3204 Ibf/in.?)
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Superheated Vapor

» \When the system is at the saturated vapor state, further
heating at fixed pressure results in increases in both
temperature and specific volume.

» This state is represented by s (highlighted by the blue dot).

» Vapor states such as this, where temperature is higher than
the saturation temperature corresponding to the pressure at
the state, are called superheated vapor states.

P =22.09 MPa (3204 Ibf/in.?)
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Steam Tables

» Tables of properties for different substances
are frequently set up in the same general
format. The tables for water, called the
steam tables, provide an example of this
format. The steam tables are in appendix
tables A-2 through A-5.

» Table A-4 applies to water as a superheated
vapor.

» Table A-5 applies to compressed liquid water.

» Tables A-2 and A-3 apply to the two-phase,
liquid-vapor mixture of water.



Single-Phase Regions

» Example: Properties associated with superheated
water vapor at 10 MPa and 400°C are found in
Table A-4.

» v =0.02641 m3/kg
»u = 2832.4 kd/kg

>/ = 3096.5 kJ/kg
> s = 6.2120 kJ/kg-K

T v u h S v u h )
°C m’/kg  kl/kg kJ/kg kJ/kgK m’/kg | kl/kg | kl/kg | kl/kgK
p = 80 bar = 8.0 MPa p 9 100 bar = 10.0 MPa
(Tsat = 295.06°C) (Tsat = 3] 1.06°C)
Sat. 0.02352 | 2569.8 | 2758.0 | 5.7432 0.01803 | 2544.4 || 2724.7| 5.6141
320 0.02682 | 2662.7 | 2877.2 | 5.9489 0.01925 | 2588.8 | 2781.3|| 5.7103
360 0.03089 | 2772.7 | 3019.8 | 6.1819 0.02331 | 2729.1 | 2962.1 || 6.0060
400 0.03432 | 2863.8 | 3138.3 | 6.3634 0.026414D2832.4% 3096.5 15.6.2120
440 0.03742 | 2946.7 | 3246.1 | 6.5190 0.02911 | 2922.1 [3213.2 6.3805
480 0.04034 | 3025.7 | 3348.4 | 6.6586 0.03160 | 3005.4 |3321.4| 6.5282




Linear Interpolation

» \When a state does not fall exactly on the grid of values provided
by property tables, linear interpolation between adjacent entries

IS used.

» Example: Specific volume (v) associated with superheated
water vapor at 10 bar and 215°C is found by linear interpolation

between adjacent entries in Table A-4.

(0.2275 - 0.2060) m*/kg _ (v —0.2060) m*kg v =0.2141 m3/kg

slope =
(240 — 200)°C (215 -200)°C
r (24(}“-:‘. 0.2275 %)
= T v u h s
‘B p= dr o 3 .
- -— T S C m3/kg kJ/kg klJ/kg kJ/kg-K
E 200 0.2060
I i 215 p ="
= . =10 bar = 1.0 MPa
(2"”°C- U-zﬂf‘”%) = L2238 g (Tsat = 179.91°C)
T | Sat. 0.1944 || 2583.6 | 2778.1 | 6.5865
200 215 240 200 0.2060 ‘ 2621.9 | 2827.9 | 6.6940
7(°C) 240 0.2275 | 2692.9 | 2920.4 | 6.8817




Two-Phase Liquid-Vapor Region
» Tables A-2/A-2E

Critical point
(Temperature Table) and RN
A-3/A-3E (Pressure Table) {7 J N\ /.
provide iy —
» saturated liquid (f) data

Uy v,
Specific volume

» saturated vapor (g) data

Table note: For saturated liquid specific volume, the table heading is vx103.
At 8°C, v, x 10° =1.002 — v,=1.002/103=1.002 x 103,

Specific Volume Internal Energy Enthalpy Entropy
Table A-2 m3/kg kJ/kg kJ/kg kJ/kg-K
Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat.

Temp | Press. || Liquid | Vapor | Liquid | Vapor || Liquid | Evap. | Vapor | Liquid || Vapor | Temp
"C bar vix 103 (N Us Uy h¢ hfg hg Sf Sy °C
.01 0.00611 1 1.0002 | 206.136 0.00 2375.3 0.01 2501.3 | 2501.4 | 0.0000 || 9.1562 .01
4 0.00813 1 1.0001 | 157.232 | 16.77 | 2380.9 || 16.78 || 2491.9 | 2508.7 | 0.0610 || 9.0514 4

5 0.00872 (1 1.0001 | 147.120 | 20.97 | 2382.3 || 20.98 || 2489.6 | 2510.6 | 0.0761 || 9.0257 5




Two-Phase Liquid-Vapor Region

» The specific volume of a two-phase liquid-
vapor mixture can be determined by using | £, O\ s
the saturation tables and quality, x. o D\ L.

» The total volume of the mixture is the sum [: /
of the volumes of the liquid and vapor

Specific volume

phases: V=V. +V

liq vap

» Dividing by the total mass of the mixture, m, an average
specific volume for the mixture is: SV Vg N Viap

m m m

» With V]

liq = MiqUs> Vyap = M0 mvap/m =Xx, and my/m=1-x:

vap vap“ g’

v=1-x)v;+x0, =v;+x(v, — vy (Eq.3.2)



Two-Phase Liquid-Vapor Region

» Since pressure and temperature are NOT
Independent properties in the two-phase liquid-
vapor region, they cannot be used to fix the state
In this region.

» The property, quality (x), defined only in the two-
phase liquid-vapor region, and either temperature
or pressure can be used to fix the state in this
region.

v=1-x)v;+x0, =v;+x(v, — vy (Eq.3.2)
u={-x)u;+xu,=u;+x(u,—up) (Eq.3.6)
h={—-x)h¢+xh, = h¢+x(h,— hy) (Eq.3.7)



Two-Phase Liquid-Vapor Region

» Example: A system consists of a two-phase liquid-vapor
mixture of water at 6°C and a quality of 0.4. Determine the
specific volume, in m3/kg, of the mixture.

» Solution: Apply Eq. 3.2, v=19;+x(v, — vy
Substituting values from Table 2: v, = 1.001x10- m3/kg and

v, = 137.734 m3/kg:

v =1.001x10- m¥/kg + 0.4(137.734 — 1.001x10-3) m¥/kg
v =55.094 m’/kg

Specific Volume

Internal Energy

Enthalpy

Entropy

m3/kg kJ/kg kJ/kg kJ/kg-K
Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat.
Temp | Press. | Liquid | Vapor | Liquid | Vapor | Liquid | Evap. | Vapor | Liquid | Vapor | Temp
°C bar vix 103 Ug Ur Uy h¢ hfg hg Sf Sy °C
.01 0.00611 || 1.0002 | 206.136 0.00 2375.3 0.01 2501.3 | 2501.4 | 0.0000 | 9.1562 .01
4 0.00813 || 1.0001 | 157.232 | 16.77 | 2380.9 | 16.78 | 2491.9 | 2508.7 | 0.0610 | 9.0514 4
5 0.00872 || 1.0001 | 147.120 | 20.97 | 2382.3 | 20.98 | 2489.6 | 2510.6 | 0.0761 | 9.0257 5
6 0.00935 H 1.0001 | 137.734 | 25.19 | 2383.6 | 25.20 | 2487.2 | 2512.4 | 0.0912 | 9.0003 6
<] 0.01072 1.000Z2 120.91/7 335.09 25060.4 35.00 2482.5 2>10.1 O.1212 3.950 1 e




Property Data Use in the
Closed System Energy Balance

Example: A piston-cylinder assembly contains 2 kg of
water at 100°C and 1 bar. The water is compressed to a
saturated vapor state where the pressure is 2.5 bar.
During compression, there is a heat transfer of energy
from the water to its surroundings having a magnitude of
250 kJ. Neglecting changes in kinetic energy and
potential energy, determine the work, in kdJ, for the
process of the water.

A
State 1 IEEEEEREEE | State 2 P, =2.5 bar
|
T,=100°C || 2 kg i Saturated vapor 2/ ; py=1bar
py=1bar || Of water, P, =2.5bar ¢

T, = 100°C I’ N

0 =-250 kJ




Property Data Use in the
Closed System Energy Balance
Solution: An energy balance for the closed system is

41(€+41>ﬁ0+AU= 0-w

where the kinetic and potential energy changes are neglected.

Thus W=0-m(u,—u,)

State 1 is in the superheated vapor region and is fixed by
p;=1bar and T, =100°C. From Table A-4, u, = 2506.7 kJ/kg.

State 2 is saturated vapor at p, = 2.5 bar. From Table A-3,
u, = u, =23537.2 kJ/kg.

W =_-250 kJ — (2 kg)(2537.2 — 2506.7) kJ/kg = —311 kJ

The negative sign indicates work is done on the system as
expected for a compression process.



Specific Heats

» Three properties related to specific internal energy and specific
enthalpy having important applications are the specific heats c,
and ¢, and the specific heat ratio k.

CU:(G_“) cp=(%) )
oT |, oT ), c,
(Eq. 3.8) (Eq. 3.9) (Eq. 3.10)

» In general, ¢, is a function of v and T (or p and T), and ¢,
depends on both p and T (or v and 7).

» Specific heat data are provided in Fig 3.9 and Tables A-19
through A-21.




Property Approximations for Liquids

» Approximate values for v, u, and h at liquid states can be
obtained using saturated liquid data. = S

» Since the values of v and u for liquids
change very little with pressure at a fixed p = constant
temperature, Eqs. 3.11 and 3.12 can be used
to approximate their values. / —

U(T, p) = vf(]) (Eq° 3°11) (T, p)=ve(T)
u(T, p) ~ uf(]') (Eq. 3.12) u(T, p) = u‘('l')‘

U Uy t

v Saturated
liquid

» An approximate value for k at liquid states can be obtained using
Egs. 3.11 and 3.12 in the definition 2 = u + pv: (T, p) = u(T) + pv(7T)

or alternatively
h(T; p) = h(T) + v DIp — ps, (D] (Eq.3.13)
where p . denotes the saturation pressure at the given temperature

» \When the underlined term in Eq. 3.13 is small
W(T,p)=h(T)  (Eq.3.14)




Incompressible Substance Model

» For a substance modeled as incompressible
» 0 = constant »u=u(T)

» For a substance modeled as incompressible,
¢, = ¢,; the common specific heat value is

represented by c.

» For a substance modeled as incompressible
with constant c:
u,—u,=c(l,—T)) (Eq. 3.20a)
hy—h,=c«(T,- T, +v@p,—p) (Eq. 3.20b)

»In Eq. 3.20b, the contribution of the underlined
term is often small enough to be ignored.



Generalized Compressibility Chart

» The p-v-T relation for 10 common gases is
shown in the generalized compressibility chart.

1.1
1.0 T =2.00
A A ! R o) A | IR S
0.9 -
To=1.5 &
—_— " Tp = 1.50 I ro.
2 s,
()7 = O /(/(
I ABS-TY Jo v
I:,.;f ‘IE ! 'T:/J‘
i 08 A
" Legend
0.5 x Methane @ [sopentane
© Ethylene @ n-Heptane
4 Ethane 6 Nitrogen
0.4 @ Propane e Carbon dioxide
O n-Butane  ® Water
0.3 —— Average curve based on
data on hydrocarbons
0.2
0.1

0 0.5 1.0: 1.5 20 25 30 35 40 45 S50 55 60 65 70

Reduced pressure pp



Generalized Compressibility Chart

» In this chart, the compressibility factor, Z, is plotted versus
the reduced pressure, p;, and reduced temperature T,

where 7 _ P
RT Pr =DP/D. IR=TT,
(Eq. 3.23) (Eq. 3.27) (Eq. 3.28)
R is the universal gas constant
_ (8314 kJ/kmol-K T
R =< 1986 Btw/bmol°R  (Eq. 3.22) .\
1545 ft-1bf/Ibmol-°R oa| e [
R[E ), A YA
The symbols p. and T, denote the =
temperature and pressure at the i e
critical point for the particular gas 1 e &V
under consideration. These values .. e

are Obtained from Tables A'1 and Ol 05 10 15 20 25 30 35 40 45 50 55 60 65 70
A-1 E . Reduced pressure pg



Studying the Generalized Compressibility Chart

» Low values of pg, where Z= 1, do not necessarily
correspond to a range of low absolute pressures.

» For instance, if p, = 0.10, then p = 0.10p.. With p_ values
from Table A-1

Water vapor p.=2209 bar - p= 22 bar
Ammonia p.=112.8 bar — p = 11.2 bar
Carbon dioxide p.= 73.9 bar — p= 7.4 bar
Air p.= 37.7bar — p= 3.8 bar

» These pressure values range from 3.8 to 22 bar, which in
engineering practice are not normally considered as low

pressures.



Introducing the Ideal Gas Model

» To recap, the generalized
compressibility chart shows that
at states where the pressure p :
Is small relative to the critical
pressure p_ (where p; is small),
the compressibility factor Zis ..
approximately 1.

0 0.5 10 15 20 25 30 35 40 45 50 55 60 65 170

» At such states, it can be assumed with reasonable
accuracy that Z=1. Then

pv=RT (Eq. 3.32)



Introducing the Ideal Gas Model

» Three alternative forms of Eq. 3.32 can be derived
as follows:

» With v =V/m, Eq. 3.32 gives
pV=mRT (Eq. 3.33)
» With v = o/M and R = R/M, Eq. 3.32 gives
po =RT (Eq. 3.34)
» Finally, with v = V/n, Eq. 3.34 gives

pV=nRT (Eq. 3.35)



Introducing the Ideal Gas Model

» Investigation of gas behavior at states where Eqs.
3.32-3.35 are applicable indicates that the specific internal
energy depends primarily on temperature. Accordingly, at
such states, it can be assumed with reasonable accuracy
that it depends on temperature alone:

u = u(T) (Eq. 3.36)

» With Eqgs. 3.32 and 3.36, the specific enthalpy also depends
on temperature alone at such states:

h=u+po=u(T)+RT (Eq. 3.37)

» Collecting results, a gas modeled as an ideal gas adheres
to Eqgs. 3.32-3.35 and Eqs. 3.36 and 3.37.



Introducing the Ideal Gas Model

» While the ideal gas model does not provide an
acceptable approximations throughout, in most
commonly applied engineering situations it is
justified for use.

» Appropriateness of the ideal gas model can be
checked by locating states under consideration
on one of the generalized compressibility charts
provided by appendix figures Figs. A-1 through
A-3.



Internal Energy and Enthalpy of Ideal Gases

» For a gas obeying the ideal gas model, specific
iInternal energy depends only on temperature.
Hence, the specific heat c,, defined by Eq. 3.8, is
also a function of temperature alone. That is,

d .
¢, (T) = d—’; (ideal gas) (Eq. 3.38)
» On integration,

(T, )= (T )= l‘;vm dT (ideal gas)y  (EQ.3.40)



Internal Energy and Enthalpy of Ideal Gases

» Similarly, for a gas obeying the ideal gas model,
specific enthalpy depends only on temperature.
Hence, the specific heat ¢,, defined by Eq. 3.9, is
also a function of temperature alone. That is,

cp(T) =7 (ideal gas) (Eq. 3.41)

» On integration,

T.

h(T2 )—h(Tl ) =fép (T)dT (ideal gas) (Eq. 3.43)



Internal Energy and Enthalpy of Ideal Gases

» In applications where the specific heats are
modeled as constant,

u(T,) —u(T)) =c,|T, - T,] (Eq. 3.50)
h(Ty) - h(Ty) = c,|T, - T}] (Eq. 3.51)

» For several common gases, evaluation of
changes in specific internal energy and enthalpy
Is facilitated by use of the ideal gas tables:
Tables A-22 and A-23.

» Table A-22 applies to air modeled as an ideal
gas.



Internal Energy and Enthalpy of Ideal Gases

» Example: Using Table A-22, determine the change in specific

h, — h, = 1335.78 kJ/kg

Ideal Gas Properties of Air

enthalpy, in kJ/kg, for a process of air from an initial state where

T, =300 K, p, =1 bar to a final state where 7, = 1500 K, p, =10 bar.
» Solution: A, =300.19 kJ/kg; h,=1635.97 kJ/kg

Over such a wide temperature interval,

not be appropriate.

use of r, — h; = ¢ [T, - T}], Eq. 3.51, would

T(K), h and u(k}/kg), s° (kJ/kg-K)

when As =0 when As =0
T h u S° pr Ur T h u S° pr Ur
250 | 250.05 178.28 1.51917 | 0.7329 979. | 1400 | 1515.42 | 1113.52 3.36200 450.5 8.919
260 | 260.09 | 185.45 1.55848 | 0.8405 887.8 | 1420 | 1539.44 | 1131.77 3.37901 478.0 8.526
270 | 270.11 192.60 1.59634 | 0.9590 808.0] 1440 | 1563.51 1150.13 3.39586 506.9 8.153
280 | 280.13 199.75 1.63279 | 1.0889 738.0| 1460 | 1587.63 | 1168.49 3.41247 537.1 7.801
285 | 285.14 | 203.33 1.65055 | 1.1584 706.1 L1480 1186 95 3 42802 568 8 1468
290 | 290.16 | 206.91 1.66802 | 1.2311 676.1 | 1500 | 1635.97 | 1205.41 3.44516 601.9 7.152
295 95171 210,49 1.68515 1 1.3068 647911520 | 1660.23 | 1223.87 3.46120 636.5 6.854
300 | 300.19 ) 214.07 1.70203 | 1.3860 621.2 | 1540 | 1684.51 1242.43 3.47712 672.8 6.569
505 305.22 217.6/ 1.71865 | 1.46806 596.0 | 1560 1708.82 1260.99 3.49276 710.5 6.301
310 L.310.24 | 221.25 1.73498 | 1.5546 572.3 11580 L1733.17 1 1279.65 3.50829 750.0 6.046




Property Data Use in the
Closed System Energy Balance

Example: A closed, rigid tank consists of 1 kg of air
at 300 K. The air is heated until its temperature
becomes 1500 K. Neglecting changes in kinetic
energy and potential energy and modeling air as an
ideal gas, determine the heat transfer, in kJ, during

the process of the air.

D>
T A

State 1 i i State 2 T,=1500 K
T,=300K!| 1kgofair | 7,=1500K
i > | T, =300 K

)4

|
|
|
|
|
|
|
QVAVd
|
|
|
|
|
|
|
L
Q




Property Data Use in the
Closed System Energy Balance
Solution: An energy balance for the closed system is

AKE + APE +AU=0 W

where the kinetic and potential energy changes are neglected
and W =0 because there is no work mode.

Thus OQ=m(u,—u,) Substituting values for specific
internal energy from Table A-22

0 =(1kg)(1205.41 — 214.07) kJ/kg = 991.34 kJ

Ideal Gas Properties of Air

T(K), h and u(k}/kg), s° (kJ/kg-K)

when As =0 when As = 0
T h u s° p: Ur T h u s° p: Ur

250 250.05 | 178.28 51917 | 0.7329 979. | 1400 1515.42 | 1113.52 | 3.36200 | 450.5 8.919
260 260.09 | 185.45 .55848 | 0.8405 887.8 | 1420 1539.44 | 1131.77 | 3.37901 478.0 8.526
270  270.11 192.60 .59634 | 0.9590 808.0] 1440 1563.51 | 1150.13 |} 3.39586 | 506.9 8.153

1

1

1
280 280.13 | 199.75] 1.63279 | 1.0889 738.0 ]| 1460 1587.63 | 1168.49 | 3.41247 | 537.1 7.801
285 285.14 |]203.33 | 1.65055 | 1.1584 706.1 L1480 __ 1611 79 L 118605 1 3 4289) SORR 7468
290 290.16 | 206.91 | 1.66802 | 1.2311 676.1 | 1500 1635.97 | 1205.41 | 3.44516 | 601.9 7.152
2905 205,17 10,491 168515 1 13068 64791 1520 1660.23 | 1223.87 | 3.46120 | 636.5 6.854
300 300.19 |214.07} 1.70203 | 1.3860 621.2 | 1540 1684.51 | 1242.43 | 3.47712 | 672.8 6.569
305 505.2Z2 [Z217.6/7] 1.71865 [ 1.40806 596.0 | 1560 1708.82 | 1260.99 | 3.49276 | 710.5 6.301
310 310.24 L|221.251 1.73498 | 1.5546 572.3 11580 1733.17 L1279.65 1 3.50829 | 750.0 6.046




Polytropic Process

» A polytropic process is a quasiequilibrium process
described by
pV" = constant (Eq. 3.52)

» The exponent, n, may take on any value from
—o0 to +oo depending on the particular process.

» For any gas (or liquid), when n =0, the process is a
constant-pressure (isobaric) process.

» For any gas (or liquid), when n = o0, the process is
a constant-volume (isometric) process.

» For a gas modeled as an ideal gas, when n =1, the
process is a constant-temperature (isothermal)
process.



