
Phase Change 
► Consider a closed system consisting of a unit mass of 

liquid water at 20oC contained within a piston-cylinder 
assembly. 

► This state is represented by l (highlighted by the blue 
dot). 

► Liquid states such as this, where temperature is lower 
than the saturation temperature corresponding to the 
pressure at the state, are called compressed liquid 
states. 

● 
l 



Saturated Liquid 
► As the system is heated at constant pressure, the 

temperature increases considerably while the specific 
volume increases slightly. 

► Eventually, the system is brought to the state 
represented by f (highlighted by the blue dot). 

► This is the saturated liquid state corresponding to 
the specified pressure. 

● f 



Two-Phase Liquid-Vapor Mixture 
► When the system is at the saturated liquid state, 

additional heat transfer at fixed pressure results in the 
formation of vapor without change in temperature but with 
a considerable increase in specific volume as shown by 
movement of the blue dot. 

► With additional heating at fixed pressure, more vapor is 
formed and specific volume increases further as shown by 
additional movement of the blue dot. 

● f ● 

► At these states, 
the system now 
consists of a 
two-phase 
liquid-vapor 
mixture. 



Two-Phase Liquid-Vapor Mixture 
► When a mixture of liquid and vapor exists in equilibrium, 

the liquid phase is a saturated liquid and the vapor phase 
is a saturated vapor. 

► For a two-phase liquid-vapor mixture, the ratio of the 
mass of vapor present to the total mass of the mixture is 
its quality, x. 

● 

vaporliquid

vapor

mm
m

x
+

=► The value of 
quality ranges from 
0 to 1. 

► At saturated liquid 
states, x = 0. 



Saturated Vapor 
► If the system is heated further until the last bit of 

liquid has vaporized it is brought to the saturated 
vapor state. 

► This state is represented by g (highlighted by the blue 
dot). 

► At saturated vapor states, x = 1. 

● g 



Superheated Vapor 
► When the system is at the saturated vapor state, further 

heating at fixed pressure results in increases in both 
temperature and specific volume. 

► This state is represented by s (highlighted by the blue dot). 
► Vapor states such as this, where temperature is higher than 

the saturation temperature corresponding to the pressure at 
the state, are called superheated vapor states. 

● s 



Steam Tables 
► Tables of properties for different substances 

are frequently set up in the same general 
format.  The tables for water, called the 
steam tables, provide an example of this 
format.  The steam tables are  in appendix 
tables A-2 through A-5. 
► Table A-4 applies to water as a superheated 

vapor. 
► Table A-5 applies to compressed liquid water. 
► Tables A-2 and A-3 apply to the two-phase, 

liquid-vapor mixture of water.   



T 
oC 

v 
m3/kg 

u 
kJ/kg 

h 
kJ/kg 

s 
kJ/kg·K 

 v 
m3/kg 

u 
kJ/kg 

h 
kJ/kg 

s 
kJ/kg·K 

          

 
p = 80 bar = 8.0 MPa 

(Tsat = 295.06oC) 
 

p = 100 bar = 10.0 MPa 
(Tsat = 311.06oC) 

Sat. 0.02352 2569.8 2758.0 5.7432  0.01803 2544.4 2724.7 5.6141 
320 0.02682 2662.7 2877.2 5.9489  0.01925 2588.8 2781.3 5.7103 
360 0.03089 2772.7 3019.8 6.1819  0.02331 2729.1 2962.1 6.0060 
          
400 0.03432 2863.8 3138.3 6.3634  0.02641 2832.4 3096.5 6.2120 
440 0.03742 2946.7 3246.1 6.5190  0.02911 2922.1 3213.2 6.3805 
480 0.04034 3025.7 3348.4 6.6586  0.03160 3005.4 3321.4 6.5282 
 

Single-Phase Regions 
► Example:  Properties associated with superheated 

water vapor at 10 MPa and 400oC are found in 
Table A-4. 
► v = 0.02641 m3/kg 
► u = 2832.4 kJ/kg 

Table A-4 

► h = 3096.5 kJ/kg 
► s = 6.2120 kJ/kg·K 



Linear Interpolation 
► When a state does not fall exactly on the grid of values provided 

by property tables, linear interpolation between adjacent entries 
is used. 

► Example:  Specific volume (v) associated with superheated 
water vapor at 10 bar and 215oC is found by linear interpolation 
between adjacent entries in Table A-4. 

T 
oC 

v 
m3/kg 

u 
kJ/kg 

h 
kJ/kg 

s 
kJ/kg·K 

     

 
p = 10 bar = 1.0 MPa 

(Tsat = 179.91oC) 

Sat. 0.1944 2583.6 2778.1 6.5865 
200 0.2060 2621.9 2827.9 6.6940 
240 0.2275 2692.9 2920.4 6.8817 
 

Table A-4 

(0.2275 – 0.2060) m3/kg    (v – 0.2060) m3/kg 
(240 – 200)oC               (215 – 200)oC 

slope =                                          = → v = 0.2141 m3/kg 



Two-Phase Liquid-Vapor Region 
► Tables A-2/A-2E 

(Temperature Table) and 
A-3/A-3E (Pressure Table) 
provide  
► saturated liquid (f) data 
► saturated vapor (g) data 

Specific Volume 
m3/kg 

Internal Energy 
kJ/kg 

Enthalpy 
kJ/kg 

Entropy 
kJ/kg·K 

 
 
 

Temp 
oC 

 
 
 

Press. 
bar 

Sat. 
Liquid 

vf×103 

Sat. 
Vapor 

vg 

Sat. 
Liquid 

uf 

Sat. 
Vapor 

ug 

Sat. 
Liquid 

hf 

 
Evap. 

hfg 

Sat. 
Vapor 

hg 

Sat. 
Liquid 

sf 

Sat. 
Vapor 

sg 

 
 
 

Temp 
oC 

.01 0.00611 1.0002 206.136 0.00 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 .01 
4 0.00813 1.0001 157.232 16.77 2380.9 16.78 2491.9 2508.7 0.0610 9.0514 4 
5 0.00872 1.0001 147.120 20.97 2382.3 20.98 2489.6 2510.6 0.0761 9.0257 5 
6 0.00935 1.0001 137.734 25.19 2383.6 25.20 2487.2 2512.4 0.0912 9.0003 6 
8 0.01072 1.0002 120.917 33.59 2386.4 33.60 2482.5 2516.1 0.1212 8.9501 8 

 

Table A-2 

Table note:  For saturated liquid specific volume, the table heading is vf×103.  
                     At 8oC, vf × 103 = 1.002 → vf = 1.002/103 = 1.002 × 10–3=0.001002 



► The specific volume of a two-phase liquid- 
vapor mixture can be determined by using 
the saturation tables and quality, x. 

► The total volume of the mixture is the sum 
of the volumes of the liquid and vapor 
phases: 

Two-Phase Liquid-Vapor Region 

V = Vliq + Vvap 

► Dividing by the total mass of the mixture, m, an average 
specific volume for the mixture is: 

m
V

m
V

m
V vapliq

+==v

► With Vliq = mliqvf , Vvap = mvapvg , mvap/m = x , and mliq/m = 1 – x : 

v = (1 – x)vf + xvg = vf + x(vg – vf)   (Eq. 3.2) 



Two-Phase Liquid-Vapor Region 
► Since pressure and temperature are NOT 

independent properties in the two-phase  liquid-
vapor region, they cannot be used to fix the state 
in this region. 

► The property, quality (x), defined only in the two-
phase liquid-vapor region, and either temperature 
or pressure can be used to fix the state in this 
region. 

v = (1 – x)vf + xvg = vf + x(vg – vf)   (Eq. 3.2) 
u = (1 – x)uf + xug = uf + x(ug – uf)   (Eq. 3.6) 
h = (1 – x)hf + xhg = hf + x(hg – hf)   (Eq. 3.7) 



Two-Phase Liquid-Vapor Region 
► Example:  A system consists of a two-phase liquid-vapor 

mixture of water at 6oC and a quality of 0.4.  Determine the 
specific volume, in m3/kg, of the mixture. 

► Solution:  Apply Eq. 3.2,  v = vf + x(vg – vf) 

Specific Volume 
m3/kg 

Internal Energy 
kJ/kg 

Enthalpy 
kJ/kg 

Entropy 
kJ/kg·K 

 
 
 

Temp 
oC 

 
 
 

Press. 
bar 

Sat. 
Liquid 

vf×103 

Sat. 
Vapor 

vg 

Sat. 
Liquid 

uf 

Sat. 
Vapor 

ug 

Sat. 
Liquid 

hf 

 
Evap. 

hfg 

Sat. 
Vapor 

hg 

Sat. 
Liquid 

sf 

Sat. 
Vapor 

sg 

 
 
 

Temp 
oC 

.01 0.00611 1.0002 206.136 0.00 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 .01 
4 0.00813 1.0001 157.232 16.77 2380.9 16.78 2491.9 2508.7 0.0610 9.0514 4 
5 0.00872 1.0001 147.120 20.97 2382.3 20.98 2489.6 2510.6 0.0761 9.0257 5 
6 0.00935 1.0001 137.734 25.19 2383.6 25.20 2487.2 2512.4 0.0912 9.0003 6 
8 0.01072 1.0002 120.917 33.59 2386.4 33.60 2482.5 2516.1 0.1212 8.9501 8 

 

Table A-2 

Substituting values from Table 2:  vf = 1.001×10–3 m3/kg and 
vg = 137.734 m3/kg: 

v = 1.001×10–3 m3/kg + 0.4(137.734 – 1.001×10–3) m3/kg 
v = 55.094 m3/kg 



Property Data Use in the  
Closed System Energy Balance 

Example:  A piston-cylinder assembly contains 2 kg of 
water at 100oC and 1 bar.  The water is compressed to a 
saturated vapor state where the pressure is 2.5 bar.  
During compression, there is a heat transfer of energy 
from the water to its surroundings having a magnitude of 
250 kJ. Neglecting changes in kinetic energy and 
potential energy, determine the work, in kJ, for the 
process of the water. 

State 1  
2 kg 

of water  
T1 = 100oC 
p1 = 1 bar 

State 2  
Saturated vapor 
p2 = 2.5 bar 

Q = –250 kJ 

2 
● 
● 

T 

v 

p1 = 1 bar 

1 

p2 = 2.5 bar 

T1 = 100oC 



Property Data Use in the  
Closed System Energy Balance 

Solution:  An energy balance for the closed system is 

ΔKE + ΔPE +ΔU = Q – W 
0 0 

where the kinetic and potential energy changes are neglected. 

Thus W = Q – m(u2 – u1) 
 



Property Data Use in the  
Closed System Energy Balance 

Solution:  An energy balance for the closed system is 

ΔKE + ΔPE +ΔU = Q – W 
0 0 

where the kinetic and potential energy changes are neglected. 

Thus W = Q – m(u2 – u1) 

State 1 is in the superheated vapor region and is fixed by  
p1 = 1 bar and T1 = 100oC. From Table A-4, u1 = 2506.7 kJ/kg. 

State 2 is saturated vapor at p2 = 2.5 bar. From Table A-3, 
u2 = ug = 2537.2 kJ/kg. 

W = –250 kJ – (2 kg)(2537.2 – 2506.7) kJ/kg = –311 kJ 

The negative sign indicates work is done on the system as 
expected for a compression process. 



Specific Heats 
► Three properties related to specific internal energy and specific 

enthalpy having important applications are the specific heats cv 
and cp and the specific heat ratio k. 
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=

(Eq. 3.10) 

►  In general, cv is a function of v and T (or p and T), and cp 
depends on both p and T (or v and T). 

► Specific heat data are provided in Fig 3.9 and Tables A-19 
through A-21. 



Property Approximations for Liquids 
► Approximate values for v, u, and h at liquid states can be 

obtained using saturated liquid data. 
► Since the values of v and u for liquids 

change very little with pressure at a fixed 
temperature, Eqs. 3.11 and 3.12 can be used 
to approximate their values. 

v(T, p) ≈ vf(T) 
u(T, p) ≈ uf(T) 

(Eq. 3.11) 
(Eq. 3.12) 

► An approximate value for h at liquid states can be obtained using 
Eqs. 3.11 and 3.12 in the definition h = u + pv:  h(T, p) ≈ uf(T) + pvf(T) 
or alternatively h(T, p) ≈ hf(T) + vf(T)[p – psat(T)]    (Eq. 3.13)  
where psat denotes the saturation pressure at the given temperature 

► When the underlined term in Eq. 3.13 is small 
h(T, p) ≈ hf(T) (Eq. 3.14) 

Saturated 
liquid 



Incompressible Substance Model 
► For a substance modeled as incompressible 
► v = constant 

► For a substance modeled as incompressible, 
cp = cv; the common specific heat value is 
represented by c. 

► For a substance modeled as incompressible 
with constant c: 

u2 – u1 = c(T2 – T1)                                (Eq. 3.20a) 
h2 – h1 = c(T2 – T1) + v(p2 – p1)            (Eq. 3.20b) 

► In Eq. 3.20b, the contribution of the underlined 
term is often small enough to be ignored. 

► u = u(T) 



Generalized Compressibility Chart 
v► The p-  -T relation for 10 common gases is 

shown in the generalized compressibility chart. 



Generalized Compressibility Chart 

TR
pZ v

=

► In this chart, the compressibility factor, Z, is plotted versus 
the reduced pressure, pR, and reduced temperature TR, 
where 

pR = p/pc TR = T/Tc 

(Eq. 3.27) (Eq. 3.28) (Eq. 3.23) 

The symbols pc and Tc denote the 
temperature and pressure at the 
critical point for the particular gas 
under consideration.  These values 
are obtained from Tables A-1 and 
A-1E. 

R
8.314 kJ/kmol·K 
1.986 Btu/lbmol·oR 
1545 ft·lbf/lbmol·oR 

(Eq. 3.22) 

is the universal gas constant 

=R



Studying the Generalized Compressibility Chart 

► Low values of pR, where Z ≈ 1, do not necessarily 
correspond to a range of low absolute pressures.   

► For instance, if pR = 0.10, then p = 0.10pc.  With pc values 
from Table A-1 

► These pressure values range from 3.8 to 22 bar, which in 
engineering practice are not normally considered as low 
pressures. 

Water vapor          pc = 220.9 bar → p =   22   bar 
Ammonia              pc = 112.8 bar → p =   11.2 bar 
Carbon dioxide    pc =   73.9 bar → p =   7.4 bar 
Air                         pc =   37.7 bar → p =   3.8 bar 



Introducing the Ideal Gas Model 

► To recap, the generalized 
compressibility chart shows that 
at states where the pressure p 
is small relative to the critical 
pressure pc (where pR is small), 
the compressibility factor Z is 
approximately 1. 

► At such states, it can be assumed with reasonable 
accuracy that Z = 1.  Then 

pv = RT (Eq. 3.32) 



Introducing the Ideal Gas Model 

► Three alternative forms of Eq. 3.32 can be derived 
as follows: 
► With v = V/m, Eq. 3.32 gives 

pV = mRT (Eq. 3.33) 

► With v = v/M and R = R/M, Eq. 3.32 gives 

(Eq. 3.34) TRp =v

► Finally, with v = V/n, Eq. 3.34 gives 

pV = nRT (Eq. 3.35) 



Introducing the Ideal Gas Model 
► Investigation of gas behavior at states where Eqs. 

3.32-3.35 are applicable indicates that the specific internal 
energy depends primarily on temperature.  Accordingly, at 
such states, it can be assumed with reasonable accuracy 
that it depends on temperature alone: 

u = u(T) (Eq. 3.36) 

► With Eqs. 3.32 and 3.36, the specific enthalpy also depends 
on temperature alone at such states: 

h = u + pv = u(T) + RT (Eq. 3.37) 

► Collecting results, a gas modeled as an ideal gas adheres 
to Eqs. 3.32-3.35 (pv=RT) and Eqs. 3.36 and 3.37. 



Introducing the Ideal Gas Model 
► While the ideal gas model does not provide an 

acceptable approximations throughout, in most 
commonly applied engineering situations it is 
justified for use. 

 
► Appropriateness of the ideal gas model can be 

checked by locating states under consideration 
on one of the generalized compressibility charts 
provided by appendix figures Figs. A-1 through 
A-3. 



Internal Energy and Enthalpy of Ideal Gases 

► For a gas obeying the ideal gas model, specific 
internal energy depends only on temperature.  
Hence, the specific heat cv, defined by Eq. 3.8, is 
also a function of temperature alone.  That is, 

(Eq. 3.38) dT
duTc =)(v (ideal gas) 

► On integration, 

(Eq. 3.40) ( ) ( ) dTTcTuTu ∫=−  )(12 v
T1 

T2 

(ideal gas) 



Internal Energy and Enthalpy of Ideal Gases 

► Similarly, for a gas obeying the ideal gas model, 
specific enthalpy depends only on temperature.  
Hence, the specific heat cp, defined by Eq. 3.9, is 
also a function of temperature alone.  That is, 

(Eq. 3.41) dT
dhTcp =)( (ideal gas) 

► On integration, 

(Eq. 3.43) ( ) ( ) dTTcThTh p∫=−  )(12
T1 

T2 

(ideal gas) 



Internal Energy and Enthalpy of Ideal Gases 

► In applications where the specific heats are 
modeled as constant, 

► For several common gases, evaluation of 
changes in specific internal energy and enthalpy 
is facilitated by use of the ideal gas tables:  
Tables A-22 and A-23. 

► Table A-22 applies to air modeled as an ideal 
gas. 

(Eq. 3.50) 
(Eq. 3.51) 

u(T2) – u(T1) = cv[T2 – T1] 
h(T2) – h(T1) = cp[T2 – T1] 



TABLE A-22 
Ideal Gas Properties of Air 

T(K), h and u(kJ/kg), so (kJ/kg·K) 
    when Δs = 0     when Δs = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 
260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 
270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 
280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 
285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 
290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 
295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 
300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 
305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 
310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 
 

Internal Energy and Enthalpy of Ideal Gases 
► Example:  Using Table A-22, determine the change in specific 

enthalpy, in kJ/kg, for a process of air from an initial state where  
T1 = 300 K, p1 = 1 bar to a final state where T2 = 1500 K,  p2 = 10 bar. 

► Solution: h1 = 300.19 kJ/kg; h2 = 1635.97 kJ/kg 

h2 – h1 = 1335.78 kJ/kg Over such a wide temperature interval, 
use of h2 – h1 = cp[T2 – T1], Eq. 3.51, would 
not be appropriate. 



Property Data Use in the  
Closed System Energy Balance 

Example:  A closed, rigid tank consists of 1 kg of air 
at 300 K.  The air is heated until its temperature 
becomes 1500 K.  Neglecting changes in kinetic 
energy and potential energy and modeling air as an 
ideal gas, determine the heat transfer, in kJ, during 
the process of the air. 

1 kg of air 

Q 

T1 = 300 K T2 = 1500 K 
State 1 State 2 

2 ● 

● 

T 

v 

T1 = 300 K 
1 

T2 = 1500 K 

p2 

p1 



Property Data Use in the  
Closed System Energy Balance 

Solution:  An energy balance for the closed system is 

ΔKE + ΔPE +ΔU = Q – W 
0 0 0 

where the kinetic and potential energy changes are neglected 
and W = 0 because there is no work mode. 

Thus Q = m(u2 – u1) 

TABLE A-22 
Ideal Gas Properties of Air 

T(K), h and u(kJ/kg), so (kJ/kg·K) 
    when Δs = 0     when Δs = 0 

T h u so pr vr T h u so pr vr 
250 250.05 178.28 1.51917 0.7329 979. 1400 1515.42 1113.52 3.36200 450.5 8.919 
260 260.09 185.45 1.55848 0.8405 887.8 1420 1539.44 1131.77 3.37901 478.0 8.526 
270 270.11 192.60 1.59634 0.9590 808.0 1440 1563.51 1150.13 3.39586 506.9 8.153 
280 280.13 199.75 1.63279 1.0889 738.0 1460 1587.63 1168.49 3.41247 537.1 7.801 
285 285.14 203.33 1.65055 1.1584 706.1 1480 1611.79 1186.95 3.42892 568.8 7.468 
290 290.16 206.91 1.66802 1.2311 676.1 1500 1635.97 1205.41 3.44516 601.9 7.152 
295 295.17 210.49 1.68515 1.3068 647.9 1520 1660.23 1223.87 3.46120 636.5 6.854 
300 300.19 214.07 1.70203 1.3860 621.2 1540 1684.51 1242.43 3.47712 672.8 6.569 
305 305.22 217.67 1.71865 1.4686 596.0 1560 1708.82 1260.99 3.49276 710.5 6.301 
310 310.24 221.25 1.73498 1.5546 572.3 1580 1733.17 1279.65 3.50829 750.0 6.046 
 

Q = (1 kg)(1205.41 – 214.07) kJ/kg = 991.34 kJ 

Substituting values for specific 
internal energy from Table A-22 



(Eq. 3.52) 

Polytropic Process 
► A polytropic process is a quasiequilibrium process 

described by 
pV 

n = constant 

► The exponent, n, may take on any value from   
 –∞ to +∞ depending on the particular process. 
► For any gas (or liquid), when n = 0, the process is a 
constant-pressure (isobaric) process. 
► For any gas (or liquid), when n = ±∞, the process is 
a constant-volume (isometric) process. 
► For a gas modeled as an ideal gas, when n = 1, the 
process is a constant-temperature (isothermal) 
process. 




