Wintersemester 2004/05

Technische Universität Berlin Fakultät II - Institut für Mathematik Vorlesung: Prof. Dr. Alexander Schied

Übungen: Stephan Sturm

Übungen zur Vorlesung Wahrscheinlichkeitstheorie II

10.Blatt Übungen 11.01.05 Abgaben bis 18.01.05

Hausaufgaben

1.Aufgabe: Satz von Ionescu-Tulcea für inhomogene Markov-Ketten: Ziel ist die Konstruktion einer zeitlich inhomogenen Markov-Kette, also eines stochastischen Prozesses X_k , der zum Zeitpunkt k Werte in einem Zustandsraum (S_k, \mathcal{S}_k) annimmt und dessen Übergang von $X_{k-1}(\omega)$ zu $X_k(\omega)$ durch einen stochastischen Kern Π_k von $(S_{k-1}, \mathcal{S}_{k-1})$ nach (S_k, \mathcal{S}_k) gegeben ist. Gesucht ist also eine Wahrscheinlichkeitsverteilung P_μ , so dass

$$E_{\mu}[f(X_0, \dots, X_n)] = \int \mu(dx_0) \int \Pi_1(x_0, dx_1) \dots \int \Pi_n(x_{n-1}, dx_n) f(x_0, \dots, x_n)$$

für alle $S_0 \otimes \ldots \otimes S_n$ -messbaren Funktionen $f: S_0 \times \ldots \times S_n \to [0, \infty[$ und eine gegebene Startverteilung μ auf (S_0, S_0) .

Hinweis: Man benutze den Satz von Ionescu-Tulcea, um den Raum-Zeit-Prozess (X_k, k) als homogene Markov-Kette auf einem geeignetem Zustandsraum zu konstruieren. Man beachte alle auftretenden Messbarkeitsprobleme.

2.Aufgabe: Allgemeine Version des Satzes von Ionescu-Tulcea: Ziel ist die Konstruktion eines allgemeinen (also nicht mehr unbedingt Markovschen) stochastischen Prozesses (X_k) , der im Zeitpunkt k Werte in einem Zustandsraum (S_k, S_k) annimmt. Zur genaueren Beschreibung sei

$$S^k := S_0 \times \ldots \times S_k, \qquad S^k := S_0 \otimes \ldots \otimes S_k,$$

 μ eine Startverteilung auf $(S^0, \mathcal{S}^0) = (S_0, \mathcal{S}_0)$ und das stochastische Bewegungsgesetz gegeben durch Kerne K_k von $(S^{k-1}, \mathcal{S}^{k-1})$ nach (S_k, \mathcal{S}_k) . Gesucht ist dann eine Wahrscheinlichkeitsverteilung P_{μ} , so dass

$$E_{\mu}[f(X_0,\ldots,X_n)] = \int \mu(dx_0) \int K_1(x_0,dx_1) \ldots \int K_n(x_0,\ldots,x_{n-1},dx_n) f(x_0,\ldots,x_n)$$

für alle S^n -messbaren Funktionen $f: S^n \to [0, \infty[$.

Hinweis: Man modelliere $\bar{X}_k := (X_0, \dots, X_k)$ als zeitlich inhomogene Markov-Kette mit Zustandsraum (S^k, \mathcal{S}^k) und verwende die in Aufgabe 1 gezeigte Existenzaussage für inhomogene Markov-Ketten. Man beachte wiederum alle auftretenden Messbarkeitsprobleme.

3.Aufgabe: Für jedes n sei (S_n, \mathcal{S}_n) ein messbarer Raum,

$$S^n := S_0 \times \ldots \times S_n, \qquad S^n := S_0 \otimes \ldots \otimes S_n$$

 $\Omega := S_0 \times S_1 \times \ldots, \qquad X_n(\omega) := \omega(n), \qquad \mathcal{A} := \sigma(X_0, X_1, \ldots)$

Wir definieren die Projektoren

$$\pi_n: \Omega \to S^n$$
 $(x_0, x_1, \ldots) \mapsto (x_0, \ldots, x_n)$

sowie

$$\varphi_n := S^{n+1} \to S^n$$

$$(x_0, \dots, x_{n+1}) \mapsto (x_0, \dots, x_n).$$

a) Sei P eine Wahrscheinlichkeitsverteilung auf (Ω, \mathcal{A}) und $P^n := P \circ \pi_n^{-1}$. Dann ist die Familie (P_n) konsistent im folgenden Sinne:

$$P^{n+1} \circ \varphi_n^{-1} = P^n$$
 für alle n .

b) Konsistenzsatz von Kolmogorov: Für jedes n sei P^n eine Wahrscheinlichkeitsverteilung auf (S^n, S^n) und die Familie (P^n) sei konsistent (vgl. Teil a)). Außerdem sei jedes S_n polnisch mit $S_n := \mathcal{B}(S_n)$. Dann gibt es genau eine Wahrscheinlichkeitsverteilung P auf (Ω, \mathcal{A}) mit $P^n = P \circ \pi_n^{-1}$.

 $\mathit{Hinweis}$: S^n ist wieder polnisch bezueglich der Produkttopologie und es gilt $\mathcal{S}^n = \mathcal{B}(S^n)$. Man wende Korrolar IV.1.6 an, um die Aussage auf die allgemeine Aussage des Satzes von Ionescu-Tulcea (Aufgabe 2) zurückzuführen.