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Motivation I

• Pricing of (perpetual) American options when the underlying asset
price is a pure-jump Markov process.

• The asset price {S(t)}t≥0 is characterized by the infinitesimal
generator:

Au(x) =

∫
Rn\{0}

(
u(x + y)− u(x)− y · ∇u(x)1{|y |≤1}

)
dν(y)

+ b(x) · ∇u(x),

where dν(y) is a Lévy measure.

• Consider a perpetual American option written on the underlying
{S(t)}t≥0 with payoff ϕ(x).
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Motivation II

• We assume that the perpetual American option prices is given by

u(x) := supτ∈T E
[
e−rτϕ(S(τ))

∣∣S(0) = x
]
,

where we assume that the asset price process {S(t)}t≥0 is specified
under a suitable probability measure.

• We expect u(x) to solve the system of complementarity conditions,

u ≥ ϕ on Rn,

−Au + ru = 0 on {u > ϕ},
−Au + ru ≥ 0 on {u = ϕ},

or, more compactly, we have that

min{−Au(x) + ru(x), u(x)− ϕ(x)} = 0, ∀ x ∈ Rn.
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Main questions

For the stationary obstacle problem,

min{−Au(x) + ru(x), u(x)− ϕ(x)} = 0, ∀ x ∈ Rn,

the main questions that we want to understand are:

1. Optimal regularity of solutions;

2. Regularity of the free boundary, that is, of the topological boundary
of the contact set {u = ϕ}.

We will present results about the previous two questions in the case when
the nonlocal operator A is the fractional Laplacian with drift, that is,

Au(x) = −(−∆)su(x) + b(x) · ∇u(x), ∀ x ∈ Rn,

where s ∈ (0, 1).
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Pure-jump models in mathematical finance

Jump processes are used to model asset price processes because

• Asset prices do not move continuously (small jumps can occur over
small time intervals);

• Asset prices have heavy tails, which are incompatible with a
Gaussian model.

For this reason, processes which allow for discontinuous paths and heavy
tails in their distributions have been proposed to model asset prices.

Relevant to our research are models for asset prices that can be written
as a subordinated Brownian motion such as

• Normal Inverse Gaussian processes (Barndorff-Nielsen (1997-1998));

• Variance Gamma processes (Madan and Seneta (1990));

• Tempered stable processes (Koponen (1995), Boyarchenko and
Levendorskĭı (2000), Carr, Geman, Madan, and Yor (2002-2003)).
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Normal Inverse Gaussian process
• Let Z (t) = W (t) + θt be a Brownian motion with drift.

• Let T (t) be the subordinator with Lévy measure given by

ρ(x) =
1√

2πx3/2
e−x/21{x>0}.

• The process X (t) := Z (T (t)) is called a Normal Inverse Gaussian
process and is characterized by the Lévy measure,

ν(x) =
C

|x |
eAxK1(B|x |),

where A = θ, B =
√
θ2 + 1, C = B/(2π), and K1(z) is the modified

Bessel function of the second kind.

• The infinitesimal generator of X (t) is

Au(x) =

∫
R

(u(x + y)− u(x))dν(y)

= 1− (−∆u − 2θ · ∇u + 1)1/2 (x).
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ν(x) =
C

|x |
eAxK1(B|x |),

where A = θ, B =
√
θ2 + 1, C = B/(2π), and K1(z) is the modified

Bessel function of the second kind.

• The infinitesimal generator of X (t) is

Au(x) =

∫
R

(u(x + y)− u(x))dν(y)

= 1− (−∆u − 2θ · ∇u + 1)1/2 (x).



Normal Inverse Gaussian process
• Let Z (t) = W (t) + θt be a Brownian motion with drift.

• Let T (t) be the subordinator with Lévy measure given by
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ρ(x) =
1√

2πx3/2
e−x/21{x>0}.

• The process X (t) := Z (T (t)) is called a Normal Inverse Gaussian
process and is characterized by the Lévy measure,
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Inverse Gaussian subordinator

• The subordinator of the Normal Inverse Gaussian process can be
written as the inverse local time of a one-dimensional Brownian
motion with drift, with infinitesimal generator,

Lu(y) =
1

2

d2u(y)

dy2
+

du(y)

dy
, ∀ y > 0.

• We can write L as a Sturm-Liouville operator in the form,

Lu(y) =
1

2m(y)

d

dy

(
m(y)

du

dy

)
(y), ∀ y > 0,

where we used the weight function,

m(y) = 2e2y .
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Dirichlet-to-Neumann map

• This implies that the generator of the Variance Gamma process is
the Dirichlet-to-Neumann map for the extension operator:

Ev(x , y) =
1

2
vxx + θvx +

1

2
vyy + vy ,

for all (x , y) ∈ R× (0,∞).

• In other words, we have that if v ∈ C (R× [0,∞)) is a solution to
the Dirichlet problem,{

Ev(x , y) = 0, ∀ (x , y) ∈ R× (0,∞),
v(x , 0) = v0(x), ∀ x ∈ R,

then we have that

lim
y↓0

m(y)vy (x , y) = 2 lim
y↓0

vy (x , y) = Av0(x), ∀ x ∈ R.
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ρ(x) =
1

x
e−x1{x>0}.

• The process X (t) := Z (T (t)) is called a Variance Gamma process
and is characterized by the Lévy measure,
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Gamma subordinator

• Donati-Martin and Yor (2005) prove that the subordinator of the
Variance Gamma process can be written as the inverse local time of
a one-dimensional diffusion process with infinitesimal generator,

Lu(y) =
1

2

d2u(y)

dy2
+

(
1

2y
+
√

2
K ′0(
√

2y)

K0(
√

2y)

)
du(y)

dy
, ∀ y > 0,

where K0 is the modified Bessel function of the second kind.

• We can write L as a Sturm-Liouville operator in the form,

Lu(y) =
1

2m(y)

d

dy

(
m(y)

du

dy

)
(y), ∀ y > 0,

where we used the weight function,

m(y) = y
(
K0(
√

2y)
)2

.
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Tempered stable processes

• A similar analysis can be done for the class of tempered stable
processes, which are characterized by the Lévy measure,

ν(x) =
C

|x |1+α
eAx−B|x|,

where A,B,C are positive constants, A < B, and α ∈ (0, 2).

• The Lévy measure of the subordinator corresponding to the
tempered stable process is known in closed form.

• To our knowledge, it is not known a closed form expression for a
one-dimensional diffusion whose inverse local time at the origin is
equal to the subordinator of the tempered stable process.

• Necessary and sufficient conditions for subordinators that can be
written as inverse local time of generalized diffusions were obtained
by Knight (1981), and Kotani and Watanabe (1982).
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Obstacle problems for nonlocal operators

• Up to not long ago, viewing the nonlocal operator as a
Dirichlet-to-Neumann map (or, equivalently, the underlying Lévy
process as a subordinated Brownian motion, where the subordinator
is the inverse local time of a one-dimensional diffusion) was the
unique method to analyze obstacle problems for nonlocal operators.

• Caffarelli, Ros-Oton and Serra (2016) develop a new method that
applies to all homogeneous Lévy measures that are symmetric about
the origin, and does not use the previous property.

• The above mentioned models used in mathematical finance do not
in general satisfy the assumptions in the Caffarelli, Ros-Oton and
Serra (2016) article.
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Symmetric 2s-stable processes

• We use symmetric stable processes as models for more complex
processes used in financial applications because they share many
important properties with the previous mentioned processes.

• Symmetric 2s-stable processes are characterized by the Lévy measure

ν(y) =
1

|y |n+2s
, ∀ y ∈ Rn.

• The generator of symmetric 2s-stable process can be represented in
integral form as

Au(x) =

∫
Rn

(
u(x + y)− u(x)− y · ∇u(x)1{|y |<1}

) 1

|y |n+2s
,

where s ∈ (0, 1).

• Using a functional-analytic framework, we can also represent A as

Au = −(−∆)su.
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where s ∈ (0, 1).

• Using a functional-analytic framework, we can also represent A as

Au = −(−∆)su.
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ν(y) =
1

|y |n+2s
, ∀ y ∈ Rn.

• The generator of symmetric 2s-stable process can be represented in
integral form as

Au(x) =

∫
Rn

(
u(x + y)− u(x)− y · ∇u(x)1{|y |<1}

) 1

|y |n+2s
,

where s ∈ (0, 1).

• Using a functional-analytic framework, we can also represent A as

Au = −(−∆)su.



Symmetric stable processes with drift

• We consider a generalization of symmetric stable processes by
adding a drift component, that is, we study operators of the form

Au(x) = −(−∆)su(x) + b(x) · ∇u(x) + c(x)u(x), ∀x ∈ Rn.

• The strength of the gradient perturbation is most easily seen in the
Fourier variables:

−Au(x) =
1

(2π)n

∫
Rn

e ix·ξ
(
|ξ|2s + ib(x) · ξ + c(x)

)
û(ξ), ∀ ξ ∈ Rn.

• A can be viewed as a pseudo-differential operator with symbol

a(x , ξ) = |ξ|2s + ib(x) · ξ + c(x), ∀ x , ξ ∈ Rn.

• The properties of the symbol, a(x , ξ), change depending on whether

2s < 1, 2s = 1, or 2s > 1.
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û(ξ), ∀ ξ ∈ Rn.

• A can be viewed as a pseudo-differential operator with symbol

a(x , ξ) = |ξ|2s + ib(x) · ξ + c(x), ∀ x , ξ ∈ Rn.

• The properties of the symbol, a(x , ξ), change depending on whether

2s < 1, 2s = 1, or 2s > 1.



Properties of the symbol

a(x , ξ) = |ξ|2s + ib(x) · ξ + c(x), ∀ x , ξ ∈ Rn.

We have three cases:

2s < 1, 2s = 1, or 2s > 1.

1. If 2s < 1 (supercritical regime): the drift component in a(x , ξ) has
the strongest contribution and the operator is not elliptic, so
standard theory does not apply.

2. If 2s = 1 (critical regime): the jump and drift component in a(x , ξ)
have the same contribution, but they imply different regularity
properties.

3. If 2s > 1 (subcritical regime): the jump component in a(x , ξ) has
the strongest contribution, which makes the operator elliptic, and so
we expect the standard properties of elliptic operators to hold.
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Obstacle problem

When 2s > 1, we study the stationary obstacle problem defined by the
fractional Laplacian with drift,

min{−Au, u − ϕ} = 0, on Rn,

and we prove:

• Existence, uniqueness, and optimal regularity C 1+s of solutions;

• The C 1+α regularity of the regular part of the free boundary.
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Optimal regularity of solutions



Existence and optimal regularity of solutions

Theorem (Existence and optimal regularity of solutions)
Let 1 < 2s < 2.

Assume that b ∈ C s(Rn;Rn), and c ∈ C s(Rn) is a nonnegative function.
Assume that the obstacle function, ϕ ∈ C 3s(Rn) ∩ C0(Rn), is such that

(Aϕ)+ ∈ L∞(Rn).

Then there is a solution, u ∈ C 1+s(Rn), to the obstacle problem defined
by the fractional Laplacian with drift.



Uniqueness of solutions

Theorem (Uniqueness of solutions)
Let 0 < 2s < 2 and α ∈ ((2s − 1) ∨ 0, 1).

Assume that b ∈ C (Rn;Rn) is a Lipschitz continuous function, and
c ∈ C (Rn) is such that there is a positive constant, c0, such that

c(x) ≥ c0 > 0, ∀x ∈ Rn.

Assume that the obstacle function, ϕ ∈ C (Rn).

Then there is a unique solution, u ∈ C 1+α(Rn), to the obstacle problem
defined by the fractional Laplacian with drift.



Stochastic representations of solutions
• Uniqueness of solutions is established by proving their stochastic

representation.

• Let (Ω, {F(t)}t≥0,P) be a filtered probability space, and let
N(dt, dx) be a Poisson random measure with Lévy measure,

dν(x) =
dx

|x |n+2s
,

and let Ñ(dt, dx) be the compensated Poisson random measure.

• Let {X (t)}t≥0 be the unique RCLL solution to the stochastic
equation,

X (t) = X (0) +

∫ t

0

b(X (s−)) ds +

∫ t

0

∫
Rn\{O}

xÑ(ds, dx), ∀t > 0.

• Then, if u ∈ C 1+α(Rn) is a solution to the obstacle problem, for
some α ∈ ((2s − 1) ∨ 0, 1), we have that

u(x) = sup
τ∈T

Ex
[
e−

∫ τ
0

c(X (s−)) dsϕ(X (τ))
]
, ∀x ∈ Rn,

where T denotes the set of stopping times.
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dν(x) =
dx

|x |n+2s
,
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Remarks on uniqueness

• The Lipschitz continuity of the vector field b(x) is used to ensure
the existence and uniqueness of solutions, {X (t)}t≥0, to the
stochastic equation.

• The condition that the zeroth order coefficient, c(x) ≥ c0 > 0, is
used to ensure that the expression on the right-hand side of the
stochastic representation is finite even for unbounded stopping
times, τ .

• If {X (t)}t≥0 were an asset price process, and the law of the process
were a risk-neutral probability measure, then the stochastic
representation indicates that u is the value function of an perpetual
American option with payoff ϕ on the underlying {X (t)}t≥0.
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Optimal regularity of solutions

• The optimal regularity of solutions to the obstacle problem for the
fractional Laplace operator without drift was studied by
Caffarelli-Salsa-Silvestre (2008), under the assumption that the
obstacle function, ϕ ∈ C 2,1(Rn), and by Silvestre (2007), under the
assumption that the contact set {u = ϕ} is convex.

• To obtain the optimal regularity of solutions, we reduce our problem
to an obstacle problem without drift,

min{(−∆)s ũ, ũ − ϕ̃} = 0 on Rn,

for which we can at most assume that ϕ̃ ∈ C 2s+α(Rn), for all
α ∈ (0, s).

• From now on we consider the reduced problem and we write u
instead of ũ and ϕ instead of ϕ̃.
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Extension operator

• For s ∈ (0, 1), let a = 1− 2s and consider the degenerate-elliptic
operator,

Lav =
1

2
∆v +

1− 2s

2y

∂v

∂y
,

which can be written in divergence form as

Lav(x , y) =
1

2m(y)
div (m(y)∇v) (x , y), ∀ (x , y) ∈ Rn × R+,

where m(y) = y a.

• Molchanov-Ostrovskii (1969) and Caffarelli-Silvestre (2007) prove
that, if v is a La-harmonic function such that{

Lav(x , y) = 0, ∀ (x , y) ∈ Rn × (0,∞),
v(x , 0) = v0(x), ∀ x ∈ Rn,

then we have that

lim
y↓0

m(y)vy (x , y) = −(−∆)sv0(x), ∀ x ∈ Rn.
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Steps to prove the optimal regularity of solutions

• We only need to study the regularity of the solutions in a
neighborhood of free boundary points:

Rnu > ϕ

u = ϕ
0

• We consider the height function

v(x) := u(x)− ϕ(x),

and the goal is to establish the growth estimate:

0 ≤ v(x) ≤ C |x |1+s .
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Steps to prove the optimal regularity of solutions I

• Let u(x , y) and ϕ(x , y) be the La-harmonic extensions and let:

v(x , y) := u(x , y)−ϕ(x , y)+(−∆)sϕ(O)|y |1−a, ∀ (x , y) ∈ Rn×R+.

• Extend v by even symmetry across {y = 0}.
• The height function v(x , y) satisfies the following conditions:

Lav = 0 on Rn × (R\{0}),
Lav(x , y) ≤ h(x)Hn|{y=0} on Rn+1,
Lav(x , y) = h(x)Hn|{y=0} on Rn+1\{u = ϕ},

Rn

u > ϕ
u = ϕ

y
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Steps to prove the optimal regularity of solutions II

We need a suitable monotonicity formula of Almgren-type to find the
lowest degree of regularity of the solution.

Theorem (Almgren (1979))
Let u be a harmonic function. Then the function

Φu(r) := r

∫
Br
|∇u|2∫

∂Br
u2

is non-decreasing in r ∈ (0, 1).

Moreover, Φu(r) is constant if and only if Φu(r) = k, for some
k = 0, 1, 2, . . ., and u is a homogeneous harmonic function of degree k.
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Steps to prove the optimal regularity of solutions III

• We will establish a version of the monotonicity formula for the
function:

Φp
v (r) := r

d

dr
log max

{∫
∂Br

|v |2|y |1−2s , rn+1−2s+2(1+p)

}
,

where r and p are positive constants.

• To see the connection with Almgren’s classical monotonicity formula,
omitting some technical details, the function Φp

v (r) takes the form:

Φp
v (r) := 2r

∫
Br
|∇v |2|y |1−2s∫

∂Br
v2|y |1−2s

+ (n + 1− 2s) + “some noise”.
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Steps to prove the optimal regularity of solutions IV

Theorem (Almgren-type monotonicity formula)
Let s ∈ (1/2, 1), α ∈ (1/2, s) and p ∈ [s, α + s − 1/2). Then there are
positive constants, C and γ, such that the function

r 7→ eCr
γ

Φp
v (r)

is non-decreasing, and we have that

Φv (0+) ≥ n + 1− 2s + 2(1 + s).

Remark
Omitting some technical conditions, the lower bound

Φv (0+) ≥ n + 1− 2s + 2(1 + s)

allows us to prove that the limit of the sequence of Almgren-type
rescalings {vr}, as r ↓ 0, is a homogeneous function of degree at least
1 + s.
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Steps to prove the optimal regularity of solutions V

We study the properties of the sequence of Almgren-type rescalings:

vr (x , y) :=
v(r(x , y))

dr
, where dr :=

(
1

rn+a

∫
∂Br

|v |2|y |a
)1/2

.

Lemma (Uniform Schauder estimates)
Let α ∈ ((2s − 1) ∨ 1/2, s) and p ∈ [s, α + s − 1/2).

Assume that u ∈ C 1+α(Rn) and ϕ ∈ C 2s+α(Rn), and that
lim infr→0

dr
r1+p =∞.

Then there are positive constants, C , γ ∈ (0, 1) and r0, such that

‖vr‖Cγ(B̄+
1/8

) ≤ C ,

‖∂xi vr‖Cγ(B̄+
1/8

) ≤ C , ∀i = 1, . . . , n,

‖|y |a∂yvr‖Cγ(B̄+
1/8

) ≤ C ,

for all r ∈ (0, r0).
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Steps to prove the optimal regularity of solutions VI

• Almgren monotonicity formula and the compactness of the sequence
of rescalings imply the growth estimate

0 ≤ v(x) ≤ C |x |1+s , ∀x ∈ Br0 (O).

• Optimal regularity, that is, v ∈ C 1+s(Rn), is a consequence of the
preceding growth estimate of u.
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Regularity of the free boundary



Classification of free boundary points

• The set of free boundary points: Γ = ∂{u = ϕ}.

• Almgren’s formula centered at x0 ∈ Γ: Φp
x0

.

• For all p ∈ (s, 2s − 1/2) and for all x0 ∈ Γ:

Φp
x0

(0+) = n + a + 2(1 + s) or Φp
x0

(0+) ≥ n + a + 2(1 + p).

• We define the set of regular free boundary points by

Γ1+s(u) := {x0 ∈ Γ : Φp
x0

(0+) = n + a + 2(1 + s)}.

Theorem (Regularity of the regular free boundary)
The regular free boundary, Γ1+s(u), is a relatively open set and is locally
C 1+γ , for a constant γ = γ(n, s) ∈ (0, 1).
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Comparison with previous research

• The C 1+γ regularity of the regular free boundary was obtained by
Caffarelli-Salsa-Silvestre (2008) for the fractional Laplacian without
drift in the case when the obstacle function ϕ ∈ C 2,1(Rn).

• Their method of the proof is based on monotonicity of the solution
in a tangential cone of directions.

• This approach does not have an obvious generalization to the case
when the obstacle function has a lower degree of monotonicity, that
is, ϕ ∈ C 2s+α(Rn), for all α ∈ (0, s).

• Instead we adapt Weiss’ approach (1998) of the proof of the
regularity of the regular free boundary from the case of the Laplace
operator to that of the fractional Laplacian, which in addition allows
us to work with lower degree of regularity of the obstacle function.

• A similar approach was employed in the study of the Signorini
problem with variable coefficients by Garofalo-Petrosyan-Smit Vega
Garcia (2015).
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Main idea of the proof I

We fix a regular free boundary point x0 ∈ Γ1+s .

• Because we know the optimal regularity of solutions, we can now
consider the homogeneous rescalings:

vx0,r (x , y) :=
1

r1+s
v(x0 + rx , ry), ∀ (x , y) ∈ Rn × R.

• The homogeneous rescalings converge to a non-trivial homogeneous
solution in the class of functions:

H1+s :=
{
a
(
x · e +

√
(x · e)2 + y2

)s (
x · e − s

√
(x · e)2 + y2

)
:

a > 0, e ∈ Rn, |e| = 1
}
.
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Main idea of the proof II

For a regular free boundary point x ∈ Γ1+s , let |ex | = 1 and ax > 0 be
the defining parameters for the limit of the homogeneous rescalings at x .

Theorem (Garofalo-Petrosyan-P.-Smit (2015))
Let x0 ∈ Γ1+s(u). Then there are positive constants C , η and
γ = γ(n, s), such that for all x ′, x ′′ ∈ Γ ∩ Bη(x0), we have that

|ax′ − ax′′ | ≤ C |x ′ − x ′′|γ ,
|ex′ − ex′′ | ≤ C |x ′ − x ′′|γ .

• The C 1+γ-regularity of the regular free boundary Γ1+s(u) is a direct
consequence of the previous estimates.

• The previous estimates are a consequence of a version of a Weiss
monotonicity formula and an epiperimetric inequality adapted to the
framework of the fractional Laplacian.
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Weiss-type monotonicity formula

• For x0 ∈ Γ1+s , we denote vx0 (x , y) := v(x0 + x , y).

• We define the Weiss-type functional by letting:

WL(v , r , x0) :=
1

rn+2
Ix0 (r)− 1 + s

rn+3
Fx0 (r), ∀ r ∈ R+,

Ix0 (r) :=

∫
Br (x0)

|∇vx0 |2|y |a +

∫
B′
r (x0)

vx0hx0 , ∀ r ∈ R+,

Fx0 (r) :=

∫
∂Br

|vx0 (x0 + ·)|2|y |a,

where B ′r = Br ∩ {y = 0}.

Theorem (Monotonicity of the Weiss functional)
There are constants C , r0 > 0 such that for all x0 ∈ Γ(u) we have that

r 7→WL(v , r , x0) + Cr2s−1

is nondecreasing on (0, r0).
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Epiperimetric inequality

We define the boundary adjusted Weiss energy by letting:

W (v) :=

∫
B1

|∇v |2|y |a − (1 + s)

∫
∂B1

v2|y |a.

Theorem (Epiperimetric inequality)
There are constants κ, δ ∈ (0, 1) such that if w ∈ H1(B1, |y |a) is a
homogeneous function of degree (1 + s) such that

w ≥ 0 on B1 ∩ {y = 0},
dist(w ,H1+s) < δ,

then there is w̃ ∈ H1(B1, |y |a) such that

w̃ ≥ 0 on B1 ∩ {y = 0},
w̃ = w on ∂B1,

and we have that W (w̃) ≤ (1− κ)W (w).
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Conclusions



Conclusions

• In the analysis of the obstacle problem for the fractional Laplacian
with drift, it was essential to know that the fractional Laplacian
operator can be viewed as the Dirichlet-to-Neumann map for a local
extension operator.

• This allowed us to use local methods to adapt the concepts of
monotonicity formulas already developed for model local operators
to the framework of nonlocal operators.

• This is a property shared by many models important in financial
engineering, such as the generators of the Variance Gamma process,
Normal Inverse Gaussian process, and Tempered stable process.

• In the future, we hope to extend these methods to the study of the
obstacle problem associated to the previously mentioned processes
and their lower order perturbations.
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