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Network structures of banking systems

Figure : Austria : scale-free structure (Boss et al. 2004), Switzerland : sparse and
centralized structure (Müller 2006)



Fundamental questions

How does the default of a bank transmit in the financial network ?

Can the default of one or few institutions generate a macro-cascade ?

How do the answers to the above depend on network structure ?
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Financial network

Can be modeled as a weighted directed graph (V ,e,c) on the vertex set
V = {1, . . . ,n} :

n nodes represent financial market participants

e(i, j) is the exposure of i to j

c(i) is the capital buffer of institution i which absorbs market losses

Suppose a loss ε in the assets of institution i : c(i)→ (c(i)− ε)+

Solvency condition : c(i) > 0
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Balance sheet

Assets Liabilities
Interbank assets Interbank liabilities

∑j e(i, j) ∑j e(j, i)
Deposits

D(i)
Other Equity
assets

x(i) c(i)

TABLE: Stylized balance sheet of bank i

Balance sheet equation :

c(i) = x(i) +∑
j 6=i

e(i, j)−∑
j 6=i

e(j, i)−D(i)



Insolvency cascades

The set of initially insolvent institutions is

D0(e,c) = {i ∈ V | c(i)≤ 0}

The default of a market participant j affects its counterparties :

I Creditors lose a fraction (1−R) of their exposure

I This leads to default of i if

c(i) < (1−R)e(i, j)
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Example
Contagion lasts 3 rounds

Fundamental defaults : {a}
Default cluster : Df (e,c) = {a,b,c,d}
Final number of defaults : |Df (e,c)|= 4
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Observation

Real financial networks are large (thousands of nodes) : complex networks

The Brazilian
interbank network

The structure of interbank network
Number of nodes n ' 2500

Heterogeneity in number of debtors/creditors

Heterogeneous exposures sizes

Source : Cont et al. (2010)

Previous works : many simulation studies + average cascade size on homogeneous
networks using mean field approximations (Allen, Gale (2000), Watts (2002), Nier et
al. (2007), Cont, Moussa (2010), Gai, Kapadia (2011), Battiston et al. (2012), . . .)
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Degree sequences

Financial system : (en,cn) with the vertex set [n] := {1, . . . ,n}
The out-degree of node i is given by its number of debtors

d+
n (i) = #{j | en(i, j) > 0}

and its in-degree is given by its number of creditors

d−n (i) = #{j | en(j, i) > 0}

The empirical distribution of the degrees :

µn(j,k) :=
1
n

#{i : d+
n (i) = j,d−n (i) = k}

The final fraction of defaults :

αn(en,cn) =
|Df (en,cn)|

n



Random financial network

Gn(en) : the set of all weighted directed graphs with degree sequence
d+

n ,d
−
n s.t. for all i , the set of exposures is given by the non-zero elements

of line i in the exposure matrix en

En : random financial network uniformly distributed on Gn(en)

Capital buffers cn

#{j ∈ [n], En(j, i) > 0}= d−n (j),

#{j ∈ [n], En(i, j) > 0}= d+
n (i),

{En(i, j), En(i, j) 6= 0}= {en(i, j), en(i, j) 6= 0} P−a.s.,

for all i = 1, . . . ,n
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Configuration model

Assumption : ∑i(d+
n (i) + d−n (i))2 = O(n)

=⇒ lim infn→∞P(CM(en) is simple) > 0 Janson (2009)
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Default threshold

Θ(i,τ) : measures how many counterparty defaults i can tolerate before it
becomes insolvent, if its counterparties default in the order specified by τ :

Θ(i,τ) := min{k ≥ 0,c(i) <
k

∑
j=1

(1−R)e(i,τ(j))}

pn(j,k ,θ) :=
#{(i,τ) | d+

n (i) = j,d−n (i) = k ,Θ(i,τ) = θ}
nµn(j,k)j!



Natural assumptions

There exists a
1 probability distribution µ with average λ ∈ (0,∞) s.t.

µn(j,k)→ µ(j,k) as n→ ∞

2 function p s.t.
pn(j,k ,θ)→ p(j,k ,θ), as n→ ∞

for all j,k ,θ ∈ N.

Ex : exposures and capitals i.i.d. or exchangeable arrays



Asymptotic size of contagion

We can completely describe the asymptotic behaviour of contagion :

Theorem
There exists I : [0,1]→ [0,1] s.t. if π∗ is the smallest fixed point of I, we have

1 if π∗ = 1, then asymptotically almost all nodes default
2 if π∗ < 1 and furthermore π∗ is a stable fixed point of I, then

αn(En,cn)
p−→ J(π

∗) := ∑
j,k

µ(j,k)
j

∑
θ=0

p(j,k ,θ)P(Bin(j,π∗)≥ θ)

I(π) := ∑
j,k

kµ(j,k)

λ

j

∑
θ=0

p(j,k ,θ)P(Bin(j,π)≥ θ)
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Phase transition

Stress scenario : apply a common macro-shock Z , measured in % loss in
capital to all balance sheets in network

Figure : Function I for increasing magnitude of the common macro-shock Z



Proof Idea

Coupling arguments

Describing the contagion process by a Markov chain

We then show that, as the network size increases, the rescaled Markov
chain converges in probability to a limit described by a system of ordinary
differential equations, which can be solved in closed form !



Contagion described by a Markov chain

The state variables of the Markov chain are :

Sj,k ,θ,l
n (t), l < θ≤ j , the number of solvent banks with degree (j,k),

default threshold θ and l defaulted debtors before time t .

We introduce the additional variables of interest in determining the size and
evolution of contagion :

Dj,k
n (t), the number of defaulted banks at time t with degree (j,k)

Dj,k
n (t) = nµn(j,k)− ∑

θ,l,0≤l<θ≤j

Sj,k ,θ,l
n (t),

Dn(t), the number of defaulted banks at time t :

Dn(t) = ∑
j,k

Dj,k
n (t),
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D−n (t), the number of remaining in-coming half-edges belonging to
defaulted banks :

D−n (t) = ∑
j,k

kDj,k
n (t)− t.

The process will finish at the stopping time Tn which is the first time t ∈ N
when D−n (t) = 0. The final number of defaulted banks will be Dn(Tn).



Resilience condition

Corollary
If

∑
j,k

jk
µ(j,k)

λ
p(j,k ,1) < 1,

then w.h.p. (with probability→ 1 as n→ ∞), the default of a finite set of nodes
cannot trigger the default of a positive fraction of the financial network.

i→ j is a contagious link if the default of j generates the default of i

p(j,k ,1) : proportion of contagious exposures belonging to nodes with degree (j,k)
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Skeleton of contagious links

Theorem
If the resilience condition fails :

∑
j,k

jk
µ(j,k)

λ
p(j,k ,1) > 1,

then w.h.p. there exists a strongly connected set of nodes representing a
positive fraction of the financial system s.t. any node belonging to this set can
trigger the default of all nodes in the set.

A decentralized recipe for regulating systemic risk

No need to monitor/know the entire network of counterparty exposures
but simply the skeleton of contagious links
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Simulation-free stress testing of banking systems

These analytical results may be used for stress-test the resilience of a
banking system, without the need for large scale simulation

Stress scenario : apply a common macro-shock Z , measured in % loss in
asset value, to all balance sheets in network

Network remains resilient (no macro-cascade) as long as

∑
j,k

jk
µ(j,k)

λ
pZ (j,k ,1) < 1⇐⇒ Z < Z ∗



Amplification of default by contagion when ∑j,k jkµ(j,k)< ∞

Assume that the resilience condition is satisfied :

When a fraction ε of all nodes represent fundamental defaults, i.e.
p(j,k ,0) = ε for all j,k :

αn(En,cn)
p−→ ε(1 +

∑j,k jµ(j,k)p(j,k ,1)

1−∑j,k
µ(j,k)jk

λ
p(j,k ,1)

)︸ ︷︷ ︸
Amplification

+o(ε)

When p(d+,d−,0) = ε and p(j,k ,0) = 0 for all (j,k) 6= (d+,d−) :

αn(En,cn)
p−→ εµ(d+,d−)(1 +

d−

λ

∑j,k
µ(j,k)jk

λ
p(j,k ,1)

1−∑j,k
µ(j,k)jk

λ
p(j,k ,1)

)︸ ︷︷ ︸
Amplification

+o(ε)
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Amplification of default by contagion when ∑j,k jkµ(j,k) = ∞

Assume that for some Θ ∈ N, ,γ ∈ R+ and β ∈ (2,3) and for all j ∈ N :

∑
k

Θ

∑
θ=1

kµ(j,k)p(j,k ,θ)≥ γj−β+1

Theorem

There exists π̂ > 0 the smallest positive solution of

π = ∑
j,k

∑
θ≥1

kµ(j,k)

λ
p(j,k ,θ)P(Bin(j,π)≥ θ)

such that, for ε small enough and n large enough, the final fraction of defaults
is given by J(π̂) > 0.



Numerical results
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FIGURE: (a) The distribution of in-degree has a Pareto tail with exponent 2.19, (b) The
distribution of the out-degree has a Pareto tail with exponent 1.98, (c) The distribution
of the exposures (tail-exponent 2.61).



The finite sample
In a finite network the resilience condition becomes

1
mn

∑
i

d−n (i)q(Z)
n (i) < 1,

with mn the total number of links in the network and
q(Z)

n (i) : the number of ’contagious’ links of bank i .
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macroeconomic shock in the sample and limit random network.



The impact of heterogeneity
Amplification of the number of defaults in a Scale-Free Network (in and out-degree of the

scale-free network are Pareto distributed with tail coefficients 2.19 and 1.98 respectively, the

exposures are Pareto distributed with tail coefficient 2.61), the same network with equal weights

and an Erdös Rényi Network with equal exposures n = 10000.
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Related to bootstrap percolation

Bootstrap percolation process with activation threshold an integer θ≥ 2 :

A0 : initially infected nodes, selected deterministically or randomly

An uninfected node with (at least) θ infected neighbours becomes infected

Af : final infected set

Aizenman, Lebowitz (1988) - Cerf, Manzo (2002) - Holroyd (2003) (grids)
Balogh, Bollobàs, Duminil-Copin and Morris (2012) (higher dimensions)
Balogh, Bollobás (2006) (hypercube)
Balogh, Peres and Pete (2006) - Fontes, Schonmann (2008) (infinite trees)
Balogh, Pittel (2007) (random regular graphs)
Janson et al. (2011) (Erdős-Rényi random graph)
Amini (2010) (random graphs with given vertex degrees)
Amini, Fountoulakis (2014) (power-law random graphs)
Amini, Fountoulakis and Panagiotou (2014) (inhomogeneous random graphs)
. . .



Bootstrap percolation in power-law random graphs

In power-law random graphs with parameter 2 < β < 3 and maximum degree
dmax = Θ(nζ) :

ac(n) = n
θ(1−ζ)+ζ(β−1)−1

θ = o(n)

Theorem (A., Fountoulakis 2014)
We have w.h.p.

if |A0| � ac(n), then Af = A0

if |A0| � ac(n), then |Af |> εn for some ε > 0



Random recovery rates and contagion probability matrix

First order cascade : the contagion carried through the contagious links

C1 = {j | ∃ k , (j0 ∈D0, j1, . . . , jk = j), j`−1→ j` is contagious ∀` = 1, . . . ,k}

Let βij denote the probability that a link from i to j becomes contagious. Given
the exposure matrix and the realized shocks (in stress scenarios),

βij := P
(

Rji <
e(i, j)−Ci

e(i, j)

)
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Bounds in general networks

Let B := (βij)i,j∈[n] and λmax(B) = ||B||2 the largest singular value of B :

Proposition

If λmax(B) < 1, then

E [|C1|]≤
1

1−λmax(B)

√
n|D0|,

which in particular implies that w.h.p. |C1|/|D0|= O
(√

n
)
.

Ex : This upper bound is asymptotically tight in the case of star networks



Bounds in general networks

Let β
−
i := ∑j βji and β−max = maxi(β

−
i )

Proposition

If β−max < 1, then

E [|C1|]≤
1

1−β
−
max
|D0|,

which in particular implies that w.h.p. |C1|/|D0|= O (1).



Inhomogeneous random financial networks

Financial institutions have different types which are in a certain type
space S = {s1,s2, . . . ,sr} and we only have information about their types.
Ex. Core-periphery structure.

Let ni denote the number of vertices of type si , i.e.,

ni := #{v ∈ [n] | s(v) = si},

so that n1 + n2 + · · ·+ nr = n.

We shall assume that
lim

n→∞
ni/n = µi ,

so that we have µi > 0 and ni −µin = o(n).

We then assume that the probability βij of having a contagious link from
bank i to bank j depends only on the types of i and j .
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Inhomogeneous random financial networks

Consider now the r × r matrix B̄ =
(
b̄ij
)

1≤i,j≤r where b̄ij is the average number
of contagious links from an institution of type si to the institutions of type sj .

Theorem

If λmax(B̄) < 1 then w.h.p. |C1|/|D0|= O(logn) ;

If λmax(B̄) > 1 then w.h.p. there exists a strongly connected set of nodes
representing a positive fraction of the financial system such that the
default of any node belonging to this set can trigger the default of all
nodes in the set.
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Conclusions

We have proposed different frameworks for testing the possibility of large
cascades in financial networks.

These results hold for a model flexible enough to accommodate
interpretations as insolvency cascade of illiquidity cascade.

The regulator can efficiently contain insolvency contagion by focusing on
fragile nodes, especially those with high connectivity and over-exposed.

In particular, higher capital requirements could be imposed on them to
reduce their number of contagious links.



THANK YOU !
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