
LineArt.java Monday, January 5, 2026, 1:27 PM

1 import java.awt.Dimension;
2 import java.awt.Graphics;
3 import javax.swing.JPanel;
4 import javax.swing.JFrame;
5
6 public class LineArt extends JPanel {
7
8 // Unique version ID for this class to ensure saved objects can be loaded safely
9 private static final long serialVersionUID = 1L;

10
11 // Initial width of height of the starting rectangle
12 private static int width = 980;
13 private static int height = 630;
14
15 // main method to launch the program as a standalone application - no need to
16 // modify
17 public static void main(String[] args) {
18 LineArt panel = new LineArt();
19 panel.setPreferredSize(new Dimension(width + 20, height + 20)); // content size window

dimensions20
21 JFrame frame = new JFrame("Line Art"); // Title of frame
22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
23 frame.add(panel);
24 frame.pack();
25 frame.setVisible(true);
26 }
27
28 /**
29 * Draw the four corners of line art. Line art displays straight lines inside a rectangle

from one side to30 * a perpendicular side. The lines must be drawn in such a way that both the starting
points of the lines on31 * one side and the ending points on the other side are equi-distant along the sides. The
size of the rectangle32 * is 980 pixels wide by 630 pixels high.

33 *
34 * @param g the Graphics object used for drawing shapes, text, and images
35 */
36 public void drawLineArt(Graphics g) {
37
38 // Draw the initial rectangle
39 g.drawRect(10, 10, width, height);
40 //g.drawLine(989, 639, 10, 639-7);
41 int x = 1003;
42 int y = 648;
43 for (int i=0; i<70; i++) {
44 x = x-14;
45 y = y-9;
46 g.drawLine(x, 639, 10, y);
47 }
48 x=-4;
49 y=648;
50 for (int i=0; i<70; i++) {
51 x = x+14;
52 y = y-9;
53 g.drawLine(x, 639, 989, y);
54 }
55 x=-4;
56 y=648;
57 for (int i=0; i<70; i++) {
58 x = x+14;

Page 1

LineArt.java Monday, January 5, 2026, 1:27 PM

59 y = y-9;
60 g.drawLine(10, y, x, 10);
61 }
62 x=1003;
63 y=648;
64 for (int i=0; i<70; i++) {
65 x = x-14;
66 y = y-9;
67 g.drawLine(989, y, x, 10);
68 }
69
70 int smallWidth = width / 2;
71 int smallHeight = height / 2;
72 int offsetX = 10 + width / 4;
73 int offsetY = 10 + height / 4;
74 g.drawRect(offsetX, offsetY, smallWidth, smallHeight);
75
76 x = 759;
77 y = 492;
78 for (int i=0; i<35; i++) {
79 x = x-14;
80 y = y-9;
81 g.drawLine(x, 483, 255, y);
82 }
83 x=241;
84 y=492;
85 for (int i=0; i<35; i++) {
86 x = x+14;
87 y = y-9;
88 g.drawLine(255, y, x, 166);
89 }
90 x=241;
91 y=175;
92 for (int i=0; i<35; i++) {
93 x = x+14;
94 y = y+9;
95 g.drawLine(x,166,745,y);
96 }
97 x=241;
98 y=492;
99 for (int i=0; i<35; i++) {

100 x = x+14;
101 y = y-9;
102 g.drawLine(x,483,745,y);
103 }
104
105 }
106
107 /**
108 * Overrides JPanel's paintComponent method to perform custom drawing.
109 *
110 * @param g the Graphics object used for drawing shapes, text, and images
111 */
112 @Override
113 protected void paintComponent(Graphics g) {
114 super.paintComponent(g); // Clears the panel before drawing
115 drawLineArt(g);
116 }

Page 2

LineArt.java Monday, January 5, 2026, 1:27 PM

117
118 }
119

Page 3

