LineArt.java

1 import
2 import
3 import
4 import
5

6 public
7

java.awt.Dimension;
java.awt.Graphics;

javax.swing.JPanel;
javax.swing.JFrame;

class LineArt extends JPanel {

Monday, January 5, 2026, 1:27 PM

8 // Unique version ID for this class to ensure saved objects can be loaded safely
9 private static final long serialVersionUID = 1L;

10

11 // Initial width of height of the starting rectangle
12 private static int width = 980;
13 private static int height = 630;

14

15 // main method to launch the program as a standalone application - no need to
16 // modify

17 public static void main(String[] args) {

18 LineArt panel = new LineArt();

19 panel.setPreferredSize(new Dimension(width + 20, height + 20)); // content size window
20

21 JFrame frame = new JFrame("Line Art"); // Title of frame

22 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

23 frame.add(panel);

24 frame.pack();

25 frame.setVisible(true);

26}

27

28 /**

29 * Draw the four corners of line art. Line art displays straight lines inside a rectangle
30 * a perpendicular side. The lines must be drawn in such a way that both the starting
31 * one side and the ending points on the other side are equi-distant along the sides. The
32 * is 980 pixels wide by 630 pixels high.

33 *

34 * @param g the Graphics object used for drawing shapes, text, and images

35 */

36 public void drawLineArt(Graphics g) {

37

38 // Draw the initial rectangle

39 g.drawRect(10, 10, width, height);

40 //g.drawLine (989, 639, 10, 639-7);

41 int x = 1003;

42 int y = 648;

43 for (int i=0; i<70; i++) {

44 X = x-14;

45 y =y-9;

46 g.drawLine(x, 639, 10, y);

47 }

48 X=-4;

49 y=648;

50 for (int i=0; i<70; i++) {

51 X = x+14;

52 y =y-9;

53 g.drawLine(x, 639, 989, y);

54 }

55 x=-4;

56 y=648;

57 for (int i=0; i<70; i++) {

58 X = X+14;

Pagce

LineArt.java Monday, January 5, 2026, 1:27 PM

59 y = y-9;

60 g.drawLine(10, y, x, 10);
61 }

62 x=1003;

63 y=648;

64 for (int i=0; i<70; i++) {

65 X = x-14;

66 y = y-9;

67 g.drawLine(989, vy, x, 10);
68 }

69

70 int smallWidth = width / 2;

71 int smallHeight = height / 2;
72 int offsetX = 10 + width / 4;
73 int offsetY = 10 + height / 4;
74 g.drawRect(offsetX, offsetY, smallWidth, smallHeight);
75

76 X = 759;

77 y = 492;

78 for (int i=0; i<35; i++) {

79 X = x-14;

80 y = y-9;

81 g.drawLine(x, 483, 255, y);
82 }

83 x=241;

84 y=492;

85 for (int i=0; i<35; i++) {

86 X = x+14;

87 y = y-9;

88 g.drawLine(255, y, x, 166);
89 }

90 Xx=241;

91 y=175;

92 for (int i=0; i<35; i++) {

93 X = X+14;

94 y = y+9;

95 g.drawlLine(x,166,745,y);
96 }

97 x=241;

98 y=492;

99 for (int i=0; i<35; i++) {

100 X = x+14;

101 y =y-9;

102 g.drawLine(x,483,745,y);
103 }

104

105 }

106

107 /**

108 * Overrides JPanel's paintComponent method to perform custom drawing.
109 *

110 * g the Graphics object used for drawing shapes, text, and images
111 */

112 @Override
113 protected void paintComponent(Graphics g) {

114 super.paintComponent(g); // Clears the panel before drawing
115 drawLineArt(g);
116}

Pace 2

LineArt.java Monday, January 5, 2026, 1:27 PM

117
118 }
119

Pace 3

