Battery and Power Supply Considerations

ECE2799 Lecture
Prof. W. Michalson
Batteries and Power Supplies

• The function of a power supply is to provide power to the components of an electric circuit.

• Power supplies are typically characterized by their:
 – Input voltage (and possibly frequency)
 – Output Voltage
 – Output Current
 – Ripple
 – Regulation
 – Efficiency
Basics of Power Conversion

• One of the simplest types of power supply is the half-wave rectifier.

• In this case, the peak output voltage is $1.4 \times E_{\text{RMS}}$, where E_{RMS} is the AC output of the transformer.

• The average output voltage is $\text{RAVG} = 0.45 \ E_{\text{RMS}}$.

• Ripple is too high to make this useful in DC applications without filtering.

Full-Wave Rectifier

- In this case, the peak output voltage is still 1.4 \(E_{\text{RMS}} \), but average voltage is now 0.9 \(E_{\text{RMS}} \).
- Ripple is improved, but filtering is still required.
- A center-tapped transformer is required.

Bridge Rectifier

- In this case, the peak output voltage is still $1.4 \times E_{RMS}$, but average voltage is now $0.9 \times E_{RMS}$.
- Similar characteristics to a full-wave rectifier, but the transformer only needs a single winding.

Power Supply Filtering

• Smoothing out the ripple of a power supply is done using a filter.
• In this example, a capacitor is used to hold charge between peaks – this acts to smooth out the ripple.
• Raising the frequency results in less ripple for a given filter.

Power Supply Filters

• While power supply filter circuits are generally simple, adding capacitors and inductors increases the order of the filter.
• Higher order filters aid in reducing ripple.
• Basically we’re designing a low-pass for DC.
• Too much ripple can result in “AC Hum.”
Ripple

- Ripple is the variation around the average DC output of the power supply.
- Ripple is the AC component that lies on top of the desired DC signal:
 - Measured in % of nominal.
 - Measured in Vpp
- A 10V supply with 1% ripple would output voltages between 9.95 and 10.05 Volts.
- \(C \times V_r = I \times t \) is a good approximation.
 - \(C \) = Capacitance of filter \(\mu F \)
 - \(V_r \) = Peak-to-Peak Ripple voltage
 - \(I \) = load current in milliamps
 - \(t \) = time between half cycles

Source: Radio Amateurs Handbook, SGS-Thompson Application Note AN253/1088
Power Supply Example

• Suppose we want a 10 Volt supply that has 1% ripple with a load current of 1 Amp.

• Use a 7.5V transformer and bridge rectifier to get about 10.5 volts peak output.

• What filter capacitance do we need:
 – $C = \frac{(It)}{Vr} = \frac{(1000mA \times 7.5mS)}{0.1}$
 – $= 75000\mu F$!

• Output will be “close” to 10V.
Problems With Our Example

- Problem 1 – 75000μF (with a voltage rating of at least 25V) is a BIG capacitor!
 - 3”x4 ½”
 - $91

- Problem 2 – Even if we build this supply, it might not work the way we hope.
Improving Our Power Supply

• While our example power supply will work, it is an “unregulated” power supply.

• That means the DC voltage output can, and will, change somewhat with changes in the load current.

• A “regulated” supply attempts to maintain constant output regardless of changes in the load:
 • % Regulation = [(V_{OC} − V_{FL}) / V_{FL}] * 100
The Effect of Poor Regulation

- In an unregulated supply, the DC output voltage can drop significantly with increases in load current.
- The amount of ripple will increase with load.
- For applications, with a constant load, this might be fine.
- For applications with variable current requirements this can be a problem.

Source: SGS-Thompson Application Note AN253/1088
Improving Regulation

• Improving regulation can be done in a number of ways.
• In general, you’ll start with a voltage that will always be at least a little higher than you need.
• Then you’ll “regulate” that voltage down to exactly what you need.
• While the input voltage to the regulator might vary with load, the output of the regulator will remain constant.
A Really Simple Regulator

- About the simplest regulator circuit is a Zener diode.
- This approach is fine for up to about 100mA.
- Resistor R must be sized to ensure that the Zener always draws current.
- Note resistor and Zener power dissipation!

Source: SGS-Thompson Application Note AN253/1088
Series Regulators

- Another approach that does not pass all of the current through a series resistor is the use of a “pass transistor”.
- Most “3-terminal” regulators use this approach.
- Be careful of power dissipation in the regulator!

Source: SGS-Thompson Application Note AN253/1088
Generic 12V Power Supply

Source: SGS-Thompson Application Note AN253/1088
Increasing Efficiency

- DC-to-DC converters provide an efficient way to generate higher, or lower, voltages than the input voltage.
- Some controller devices generate multiple voltages.
- Positive and/or negative outputs are possible.

Source: http://www.maxim-ic.com/appnotes.cfm/appnote_number/2031/
DC-to-DC Converters

• Efficiencies of 90% are not uncommon in DC-to-DC converters.
• Much higher parts count than 3-terminal regulators.
• Be careful of
 – Saturation of inductors
 – ESR of filter capacitors
 – Ratings of switch and output diode.

Source: http://www.maxim-ic.com/appnotes.cfm/appnote_number/2031/
Batteries

• We started this discussion talking about AC powered DC supplies.
• Next, we shifted to DC-to-DC converters, with the assumption that the converter was powered from an AC-to-DC supply.
• There is no reason that the power source cannot be a DC source, such as a battery.
• Virtually all portable electronic devices use battery powered DC-to-DC converters.
How Long Does a Battery Last?

• Batteries come in a variety of shapes, sizes, and voltages.
• Batteries are most commonly rated with a “capacity.”
 – Capacity is rated in milliamp-hours (mAh)
 – Capacity also assumes a nominal discharge rate – this rate varies from battery to battery
• Some batteries may be damaged if they are discharged too far!
The Common “D” Cell

ENERGIZER NO. EN95

Chemical System: Alkaline
Zinc-Manganese Dioxide (Zn/MnO₂)
(No Added Mercury or Cadmium)

Designation: ANSI-13A, IEC-LR20

Battery Voltage: 1.5 Volts

Internal Resistance: 173 Milliohms (Fresh)

Operating Temp: -18°C to 55°C (0°F to 130°F)

Average Capacity: 20,500 mAh (to 0.8 volts)
(Rated capacity at 25 mA continuous dis
141.9 grams (5.03 oz.)

Average Weight:

Volume: 55.9 cubic centimeters (3.4 cubic inch)

Cell: One No. 3-350 (size ‘D’)

Jacket: Plastic Label

Shelf Life: 7 years (80% of rated capacity)

CONSTANT CURRENT DISCHARGE
Typical Service

Service, Hours

Discharge Current, mA

0.8 Cutoff Voltage
1.0 Cutoff Voltage
1.2 Cutoff Voltage
The A76 Coin Cell

ENERGIZER A76

Typical Discharge Characteristics
Typical Performance at 21°C (70°F)

- Load: 7.5K ohms - Continuous
- Typical Drain @ 1.25V: 0.17 mA
- Hours to 0.9V: 900

Chemical System:
Manganese Dioxide (MnO₂)

Designation:
ANSI/NEDA 1166A, IEC-LR44

Nominal Voltage:
1.5 Volts

Typical Capacity:
150 mAh* (to 0.9 volts)

Capacity Test:
7.5K ohm continuous drain at 21°C (70°F)

Typical Weight:
2.4 grams (0.08 oz.)

Typical Volume:
0.54 cubic centimeters (0.03 cubic inch)

Impedance (40 Hz):
3 to 9 ohms

Max Bulge:
This battery will bulge as it is discharged, but will not exceed the maximum height shown on the battery drawing.
The 392 Coin Cell

ENERGIZER 392/384

Specifications

- **Chemical System:** Silver Oxide (Zn/Ag₂O)
- **Designation:** ANSI-1135SO/1134SO, IEC-SR41
- **Nominal Voltage:** 1.55 Volts
- **Typical Capacity:** 41 mAh* (to 1.3 volts)
- **Capacity Test:** 15K ohm continuous drain at 21°C
- **Typical Weight:** 0.57 grams (0.023 oz.)
- **Typical Volume:** 0.18 cubic centimeters (0.011 cubic inch)
- **Impedance (40 Hz):** 10 to 20 ohms

Typical Discharge Characteristics

Typical Performance at 21°C (70°F)

- **Schedule:** Continuous
- **Typical Drain @1.55V:**
 - 0.103 milliamperes
- **Load:** 15K ohm

![Graph showing typical discharge characteristics](image-url)
Rechargeable Batteries

ENERGIZER NH50-2500

Specifications

- **Classification:** Rechargeable
- **Chemical System:** Nickel-Metal Hydride (NiMH)
- **Designation:** ANSI-1.2H4
- **Nominal Voltage:** 1.2 Volts
- **Rated Capacity:** 2500 mAh* at 21°C (70°F)
- **Typical Weight:** 73.0 grams (2.6 oz.)
- **Typical Volume:** 57.0 cubic centimeters (3.5 cubic inch)
- **Terminals:** Flat Contact
- **Jacket:** Plastic

* Based on 500 mA (0.2C rate) continuous discharge to 1.0 volts.
Battery Charging Circuits

- Charging a battery is not as simple as connecting a power supply to the terminals of the battery!
- Different battery technologies have different charging requirements (NiCd, NiMH, Li-Ion, Lead-Acid, etc.)
- Many suppliers provide controllers specifically for recharging different battery technologies.
- **Not all batteries are considered rechargeable!**
An Example Charging Circuit

R_TR PROVIDES TRICKLE CHARGE CURRENT WHEN THE LM2576 IS OFF. SELECT VALUE USING:

\[R_{TR} = \frac{(V_{IN} - 15)}{I_{TR}} \]

FIGURE 1. 2.6A NI-CD/NI-MH CHARGER

Resources

• The following companies make several power management devices (and many other useful components):
 – http://www.maxim-ic.com/
 – http://www.national.com/
 – http://ti.com/
 – http://www.fairchildsemi.com/