Project Notes:

<u>A Novel Approach to Capturing CO2 Directly from the Air Using Metal-Organic Frameworks:</u> <u>Name: Sophie He</u>

<u>Contents:</u>	
Knowledge Gaps:	2
Literature Search Parameters:	3
Tags:	3
Article #0 Notes: Template	4
Article #1: Will Better Superconductors Transform the World?	5
Article #2: Could allergies be 'deleted' someday?	7
Article #3: Sunlight-powered purifier could clean water for the impoverished	8
Article #4: Evidence of illegal emissions of ozone-depleting chemicals	10
Article #5 Notes: Utilizing CO_2 as a strategy to scale up direct air capture may face fewer short-term barriers than directly storing CO_2	12
Article #6 Notes: Water harvesting from air with metal-organic frameworks powered by natural sunlig	ght 14
Article #7 Notes: A Strategy for Trapping Molecular Guests in MOF-5 Utilizing Surface-Capping Group	s 17
Article #8 Notes: A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture	19
Article #9 Notes: These 2 companies can pull CO2 straight from the air	21
Article #10 Notes: A review on metal-organic frameworks: Synthesis and applications	23
Patent #1 Notes: Activated carbon-metal organic framework composite materials with enhanced gas adsorption capacity and process for the preparation thereof	26
Patent #2 Notes: Gas adsorption on metal-organic frameworks	28
Article #11 Notes: Recent advances in metal-organic frameworks: Synthesis, application and toxicity	30
Article #12 Notes: Direct air capture of CO2 in designed metal-organic frameworks at lab and pilot sca	ale 32
Article #13 Notes: Direct Capture of CO2 from Ambient Air	34
Article #14 Notes: Back to the Basics: Developing Advanced Metal-Organic Frameworks Using Fundamental Chemistry Concepts	36
Article #15 Notes: Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures	38

H	He 1
Article #16 Notes: Computational screening of metal-organic frameworks for ammonia capture from humid air	40
Article #17 Notes: How to Make Metal-Organic Frameworks (MOFs)	42
Article #18 Notes: Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture	44
Article #19 Notes: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials	46
Article #20 Notes: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials	47

Knowledge Gaps:

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

Knowledge Gap	Resolved By	Information is located	Date resolved

Literature Search Parameters:

These searches were performed between (Start Date of reading) and XX/XX/2019. List of keywords and databases used during this project.

Database/search engine	Keywords	Summary of search

Tags:

#energyefficiency	#allergies
#wateravailability	#airpollution
#carboncapture	#DAC
#MOFs	#cappingreagent
#MOFsynthesis	#simulations

Article #0 Notes: Template

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title	
Source citation (APA Format)	
Original URL	
Source type	
Keywords	
#Tags	
Summary of key points + notes (include methodology)	
Research Question/Problem/ Need	
Important Figures	
VOCAB: (w/definition)	
Cited references to follow up on	
Follow up Questions	1. 2. 3.

Article #1: Will Better Superconductors Transform the World?

Source Title	Will Better Superconductors Transform the World?
Source citation (APA Format)	Levin, J. (2024, May 9). <i>Will Better Superconductors Transform the World?</i> Quanta Magazine. https://www.quantamagazine.org/will-better-superconductors-transform-the-world-20240509/
Original URL	https://www.quantamagazine.org/will-better-superconductors-transform-the- world-20240509/
Source type	Website
Keywords	Superconductor, energy efficiency
#Tags	#energyefficiency
Summary of key points + notes (include methodology)	This article from Quanta Magazine is an adapted version of an interview with a physicist who provides insight about the advances in superconductors. Regular conductors lose energy as electrons flow through them—one example being loss of energy in the form of heat. Superconductors, on the other hand, have no such loss of energy, so the discovery of a superconductor that could function in normal temperature and pressure conditions would have profound effects on energy efficiency. So far, superconductors are already used in CAT scans, MRI scans, and maglev trains; however, they are not more widespread because they only exist in low temperatures or under high pressure. Due to the BCS theory and the concept of Cooper pairs—electrons attract rather than repel under certain conditions—scientists have learned more about how superconductors work and have also discovered more clues hinting at the type of material a superconductor at regular conditions to the composition of a substance alter its material properties, leading to repeating cycles of trial and error. Still, scientists are now closer than ever to finding superconductors at room temperature and normal pressure and improving energy efficiency in a way that could benefit the entire world.
Research Question/Problem/ Need	Can a superconductor be developed so that it can be used at regular conditions?
Important Figures	N/A
VOCAB: (w/definition)	Superconductor: a conductor that conducts without energy loss
Cited references to follow up on	https://www.quantamagazine.org/high-temperature-superconductivity- understood-at-last-20220921/ https://www.quantamagazine.org/room-temperature-superconductor-discovery- meets-with-resistance-20230308/
Follow up Questions	 Do the superconductors that have already been discovered function properly over long distances?

Article #2: Could allergies be 'deleted' someday?

Source Title	Could allergies be 'deleted' someday?
Source citation (APA Format)	Sohn, R. (2024, February 16). <i>Could allergies be 'deleted' someday?</i> Live Science. https://www.livescience.com/health/allergies/what-do-some-allergies-last-a- lifetime-newly-described-immune-cells-to-blame
Original URL	https://www.livescience.com/health/allergies/what-do-some-allergies-last-a- lifetime-newly-described-immune-cells-to-blame
Source type	Science Website
Keywords	Allergies, Immune System, Immunoglobulin
#Tags	#allergies
Summary of key points + notes (include methodology)	This article from Live Science describes the discovery of a type of immune cell that explains the existence of long-term allergies. These memory B immune cells typically remember viruses, bacteria, and other threats, producing an antibody, immunoglobulin G (IgG), to attack the harmful threat; however, some of these immune cells remember allergens and produce immunoglobulin E (IgE), which attacks harmless proteins in the allergen, resulting in an allergic reaction when exposed to an allergen. Prior to this discovery, scientists had only discovered short-lived plasma cells that produced IgE, but it didn't explain persisting allergies. Unlike the plasma cells, the immune cells can live for longer in one's body, resulting in a longer lasting allergy than one caused by the plasma cells. This new knowledge could help develop better treatment of allergies, as previous medicine and techniques such as immunotherapy may reduce the reaction, but they do not address the root cause of allergies: the immune cells that switch to producing IgE.
Research Question/Problem/ Need	What causes short-term and long-term allergies?
Important Figures	N/A
VOCAB: (w/definition)	Immunoglobulin: antibodies, which are proteins meant to fight off perceived threats to the body
Cited references to follow up on	https://www.ncbi.nlm.nih.gov/books/NBK27117/ https://www.ncbi.nlm.nih.gov/books/NBK541058/
Follow up Questions	 How effective is immunotherapy in reducing the symptoms of allergies? What causes oral allergy syndrome? (related to allergies in general) What sorts of medicine can be used to address IgE?

Article #3: Sunlight-powered purifier could clean water for the impoverished

Source Title	Sunlight-powered purifier could clean water for the impoverished
Source citation (APA Format)	Service, R. F. (2017, February 2). <i>Sunlight-powered purifier could clean water for the impoverished</i> . Science. https://www.science.org/content/article/sunlight-powered-purifier-could-clean-water-impoverished
Original URL	https://www.science.org/content/article/sunlight-powered-purifier-could-clean- water-impoverished
Source type	Science Journal
Keywords	Solar still, clean water
#Tags	#wateravailability
Summary of key points + notes (include methodology)	This article describes a new faster way of using solar energy to generate clean water for those who don't have access to it. Solar stills use the sun's energy to evaporate water-leaving behind pollutants-and then collect the clean evaporated water. They have been around for a long time, but they are extremely inefficient in both speed and energy use. Researchers have sought to eliminate these problems by creating a design that only heats and evaporates the top portion of the water, which reduces energy consumption. They also experimented with using light-absorbing nanomaterials to increase the absorption of solar energy; however, the material is quite expensive. The cost led researchers to seek cheaper alternatives. One design is made up of thick paper coated in carbon black, polystyrene foam, and a clear acrylic cover. The polystyrene foam is cut into blocks that float in the unclean water. The thicker paper is placed on top of the foam but folded in such a way that it soaks up the water the foam is floating in, which then evaporates from the paper and is replaced with more water. This process not only speeds up and regulates the evaporation but increases the efficiency of the solar energy being used. The acrylic cover collects the evaporated water and leads it to a collection compartment.
Research Question/Problem/ Need	How can solar energy generate clean water at a cheaper price?

Important Figures	Solar still Solar still Solar still Radiation Convection Convection Conduction Convection Conduction Lake Asolar still is made by placing carbon-coated paper (center) atop sections of a polystyrene block that floats on a water source to be purified (left). Water wicks up the ends of the carbon-coated paper to the top surface. Incoming sunlight evaporates water that is collected for drinking. The figures above detail the design of the product.
VOCAB: (w/definition)	Nanomaterial: a material with at least one dimension that is 1-100nm in length
Cited references to follow up on	https://onlinelibrary.wiley.com/doi/full/10.1002/gch2.201600003 https://www.science.org/content/article/solar-still-made-bubble-wrap-could- purify-water- poor?adobe_mc=MCMID%3D50007176715608129752738862016995515621%7C MCORGID%3D242B6472541199F70A4C98A6%2540AdobeOrg%7CTS%3D1724033 013
Follow up Questions	 How large would such a solar still have to be to supply a family of four for a day? How easy and cheap is it to manufacture this product and get it to people who need it? Is it possible to increase the rate of evaporation through other methods?

Article #4: Evidence of illegal emissions of ozone-depleting chemicals

Source Title	Evidence of illegal emissions of ozone-depleting chemicals
Source citation (APA Format)	Hegglin, M. I. (2018). Evidence of illegal emissions of ozone-depleting chemicals. Nature, 557(7706), 317+. http://dx.doi.org.ezpv7-web-p- u01.wpi.edu/10.1038/d41586-018-05110-3
Original URL	http://dx.doi.org.ezpv7-web-p-u01.wpi.edu/10.1038/d41586-018-05110-3
Source type	Scientific Journal
Keywords	Ozone layer, chlorofluorocarbons
#Tags	#airpollution
Summary of key points + notes (include methodology)	Historically, chlorofluorocarbons such as CFC-11 have caused massive damage to the ozone layer when they were emitted into the atmosphere, leading to an international ban; however, scientists have recently discovered evidence proving that new CFC-11 emissions have entered the atmosphere since then. CFCs are very long-lasting, but their concentration in the atmosphere has been steadily decreasing since the ban until recently, when the decrease has been slowing. After taking all factors into account, scientists believe that the only possible cause of the slowing decrease are new, additional emissions of CFC, and they are now searching for a potential source of the chemical pollutants.
Research Question/Problem/ Need	How are scientists trying to protect and preserve the ozone layer?
Important Figures	280 (10) 240 240 200 160 1980 1985 1990 1995 2000 2005 2010 2015 2020 enature The figure above shows the predicted decrease of CFC concentration compared to the actual concentration (in red), revealing that something is wrong.

VOCAB: (w/definition)	Chlorofluorocarbon: organic compounds that were previously used until it was discovered that they are harmful to the ozone layer
Cited references to follow up on	https://www-nature-com.ezpv7-web-p-u01.wpi.edu/articles/s41586-018-0106-2 https://www-nature-com.ezpv7-web-p-u01.wpi.edu/articles/249810a0
Follow up Questions	 How can scientists check if the ozone layer is recovering? Are there any other ways to destroy CFCs in the atmosphere without harming the ozone layer? How can you trace chemical pollutants in air or water back to their original source?

Article #5 Notes: Utilizing CO₂ as a strategy to scale up direct air capture may face fewer short-term barriers than directly storing CO₂

Source Title	Utilizing CO_2 as a strategy to scale up direct air capture may face fewer short-term barriers than directly storing CO_2
Source citation (APA Format)	Brazzola, N., Moretti, C., Sievert, K., Patt, A., & Lilliestam, J. (2024). Utilizing CO2 as a strategy to scale up direct air capture may face fewer short-term barriers than directly storing CO2. <i>Environmental Research Letters, 19</i> (5), 054037. https://doi.org/10.1088/1748-9326/ad3b1f
Original URL	https://www.proquest.com/esdb/docview/3045481979/8A5EE6428F5D4414PQ/3 ?accountid=29120&sourcetype=Scholarly%20Journals
Source type	Scholarly Journal
Keywords	Direct air capture of carbon, net-zero emissions
#Tags	#DAC #carboncapture
Summary of key points + notes (include methodology)	 DAC is needed to achieve Paris climate goals 2 pathways: "Direct" is better in the long-term, "Spillover" is better in the short-term Climate goal = net-zero carbon emissions, eventually net-negative DACCS = direct air carbon capture & storage, expensive, but mostly because of the DAC process DACCU = DACC utilization, requires hydrogen supply and additional machinery to make fuel & chemical intermediate, but fuel creation could support fuel demand Most previous studies only look at these two pathways individually, no comparison / combining Aim to fill knowledge gap by comparing 2 possibilities for "initial development and scale-up of DAC", also taking into account govt policies etc, examining beyond resource use or economic effects Direct = CO2 is captured, compressed, and stored Spillover = CO2 is used to make synthetic fuels or chemical intermediates Used very detailed operational definitions to aim to objectively compare the two pathways and identify potential short-term bottlenecks Overall, Direct is better resources/technology-wise, but Spillover performs better when taking policies, societal factors, etc into account There are two potential pathways of what to do with carbon dioxide captured by DAC: use it (Direct pathway) or store it (Spillover pathway). By using detailed operational definitions, the researchers compare the two paths and conclude that Spillover is better in the short term while Direct is better in the long term. Direct is scalable but requires policy changes and Spillover will be easier to implement at

	first, but due to energy and resource consumption, is not as easily scalable.
Research Question/Problem/ Need	Is using carbon dioxide from DAC a good alternative to storing carbon dioxide?
Important Figures	Image: the second se
VOCAB: (w/definition)	No new vocab
Cited references to follow up on	https://www.cell.com/joule/fulltext/S2542-43511830225-3 (how DAC works) https://www.frontiersin.org/journals/energy- research/articles/10.3389/fenrg.2020.00092/full (more on how DAC works) https://pure.iiasa.ac.at/id/eprint/19787/1/The-State-of-Carbon-Dioxide-Removal- 2Edition.pdf (lengthy scholarly report on current methods of carbon removal)
Follow up Questions	 Are there other less-resource-heavy products that can be created from captured carbon dioxide? What are some ways to optimize the creation of green hydrogen or synthesis of synthetic fuels? Are there methods to incentivize the purchase of carbon credits in countries such as the US (different marketable product for the Direct pathway?)?

Article #6 Notes: Water harvesting from air with metal-organic frameworks powered by natural sunlight

Source Title	Water harvesting from air with metal-organic frameworks powered by natural sunlight
Source citation (APA Format)	Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin E.A., Furukawa, H., Umans, A.S., Yaghi, O.M., & Wang, E.N. (2017). Water harvesting from air with metal- organic frameworks powered by natural sunlight. <i>Science, 356</i> (6336), 430-434. https://doi.org/10.1126/science.aam8743
Original URL	https://www.science.org/doi/10.1126/science.aam8743
Source type	Scholarly Journal
Keywords	Metal-Organic Frameworks, water shortages, direct air harvesting
#Tags	#MOFs #wateravailability
Summary of key points + notes (include methodology)	 New method of addressing water shortages Dewing is ineffective (RH must be 100% of too much energy) and other competitors do not work for low RHs Water harvesting through vapor absorption w microcrystalline powder MOFs are easily modifiable, developed & then tested under certain conditions to optimize for specific goal (prelim data) Main issue is releasing water from MOF, use solar energy to power that Release water during the day when the sun is out, absorb water during the cooler night MOF-801 works the best @ RH20% Vapor adsorbed by diffusion, solar assisted desorption (cooled to condense water vapor into droplets that can then be collected) Ran simulations + tested out various factors to optimize the product, then tested the final prototype and collected 2.8L water / kg MOF / day; Technically tested once, but ran simulation that the experimental data matched pretty closely
	functions in an effective manner in conditions of low RH. The researchers decided to address that issue by developing and optimizing and MOF that could harvest water at RH 20%. Through preliminary tests, simulations, and a final test of the optimized product, they were able to create a protype that was able to harvest 2.8L water / kg MOF / day.
Research Question/Problem/ Need	How can water be harvested through metal-organic frameworks (MOFs)?
Important Figures	Preliminary data:

	A 0.6 (MOP-80)
	Diagram of product
	Generation Hot layer Vitro joot- Raflactor Heat talk
	Final real-world test + simulation lines
	0.35 0.31 0.54 MIN 0.17 0.144 0.07 0.06 0.47 0.05 0.4 0.07 0.05 0.4 0.05 0.5
VOCAB: (w/definition)	Adsorption = substance is distributed only on surface Absorption = substance is distributed into other material; soaked in Desorption = substance is released from material that absorbed it
Cited references to follow up on	https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201000431?casa_token=p7 At4AAs2QQAAAAA%3AHA9vpfm5gRq8IL4TOqb6vP_feNShkMqT4GeUKA_sy_7rQD nBcKs1UrrEDxw8-KTepc8TLKCTc_L08rHo https://www.science.org/doi/full/10.1126/science.1067208?casa_token=gz5vwW qOU30AAAAA%3A1GHSYoa6ys9bUxVIXEm- vqOudRI1sPO6kqDy1EiWIw8K_gdUIqAJWR7A-jkjinfJtLDQRYAjRH5CmVs https://www.science.org/doi/full/10.1126/science.1230444?casa_token=Zip3V8f M6TAAAAA%3AFEoiurPSc4tClqW2z69LyWFif5fj9rNB7zdd7xz08TwOMdwlqTKR_ H6YC3qxeUz3WtTfKGCTMrfxo4I
Follow up Questions	 Can MOFs be used / optimized for the harvesting of carbon dioxide directly from the air? Can the final prototype be altered to be portable and cost-effective for families experiencing water shortages? Can it be sold to consumers as a product?

	3. Can such a product support a family of four living in a relative humidity of 20% for a week?
--	---

Article #7 Notes: A Strategy for Trapping Molecular Guests in MOF-5 Utilizing Surface-Capping Groups

Source Title	A Strategy for Trapping Molecular Guests in MOF-5 Utilizing Surface-Capping Groups
Source citation (APA Format)	Homan, R. A., Hendricks, D. S., Rayder, T. M., Thein, U. S., Fossum, K. J., Claudio- Vázquez, A. P., Yan, J., Grimm, R. L., Burdette, S. C., & MacDonald, J. C. (2019). A Strategy for Trapping Molecular Guests in MOF-5 Utilizing Surface-Capping Groups. <i>Crystal Growth & Design</i> , <i>19</i> (11), 6331-6338. https://doi.org/10.1021/acs.cgd.9b00818
Original URL	https://pubs.acs.org/doi/10.1021/acs.cgd.9b00818
Source type	Scholarly Paper
Keywords	MOF, sorption, capping reagents
#Tags	#MOF #cappingreagent
Summary of key points + notes (include methodology)	By testing the ability of different capping reagents in their ability to trap crystal violet (CV) in MOF-5, the researchers found that carboxylic acids such as triphenylacetic acid and diphenylacetic acid, with the addition of a substituent such as zinc nitrate, released no CV over 60 minutes, This reveals that the capping reagents and substituents fully covered the pores of MOF-5 and was successful in trapping CV in MOF-5. The other reagents tested were much smaller than TPAA and DPAA and shouldn't have affected the release of CV as much as they did in the experiment did, but the researchers do not know what specific mechanism is causing the partial blocking of pores seen through the tests of other capping reagents. This experiment overall serves as a proof-of-concept that molecular storage and trapping in MOFs in possible, and further avenues include finding a more accurate way to predict pore coverage / post synthesis pore size adjustments.
Research Question/Problem/ Need	What is the feasibility of using capping reagents to trap guest molecules in MOF-5?

Important Figures	This table demonstrates how each of the tested capping reagents performed; the less % mass released, the better the capping reagent performed at trapping CV in MOF-5
VOCAB: (w/definition)	Hydrothermal = crystallizing substances at high temperatures or high vapor pressures Reagent = substance added to a system to cause a chemical reaction
Cited references to follow up on	https://www.science.org/doi/epdf/10.1126/science.1067208?src=getftr https://www.science.org/doi/epdf/10.1126/science.1230444?src=getftr https://pubs.rsc.org/en/content/articlelanding/2018/cs/c8cs00688a
Follow up Questions	 How can capping reagents be used, not to block pores, but to resize them? Are there other capping reagents that don't require the addition of a substituent to maximize pore coverage? Are there other methods of post synthesis pore size alteration that do not involve capping pores?

Article #8 Notes: A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture

Source Title	A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture
Source citation (APA Format)	Lin, J., Nguyen, T., Vaidhyanathan, R., Burner, J., Taylor, J. M., Durekova, H., Akhtar, F., Mah, R. K., Ghaffari-Nik, O., Marx, S., Fylstra, N., Iremonger, S. S., Dawson, K. W., Sarkar, P., Hovington, P., Rajendran, A., Woo, T. K., & Shimizu, G. K. H. (2021). A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. <i>Science</i> , <i>374</i> (6574), 1464-1469 https://doi.org/10.1126/science.abi7281
Original URL	https://www.science.org/doi/10.1126/science.abi7281
Source type	Scholarly Journal
Keywords	Selectivity, adsorption
#Tags	#carboncapture #postcombustion #MOF
Summary of key points + notes (include methodology)	 Flue gas is essentially power plant emissions; low CO2 concentration, also has N2, H2O, and acid gases Pre-existing post combustion carbon capture method: amine & solvent system, CO2 absorbing liquid but energy intensive More recently, ppl have been examining solid sorbents, but increased effectiveness tends to mean increased energy usage It is more common for MOF carbon capture systems to have selectivity over N2, not as common selectivity over water vapor Why metal-organic frameworks? Wide variety of shapes, pore sizes, surface properties, etc allow for detailed optimization; many are stable in the presence of water; overall, MOFs hold potential to make carbon capture a lot less \$\$\$ To optimize: high volume productivity and low regen energy CALF-20!! High capacity and selectivity for CO2, stable to steam and wet acid gases ~38% void volume Since selectivity over N2 is more common, researchers examined selectivity over water vapor From the graphs, you can see that CALF-20 outperforms a lot of other frameworks 80% MOF + 20% polysulfone = structured CALF-20 Used Grand Canonical Monte Carlo (GCMC) simulation, helped to identify binding sites for both water and CO2 to determine that CO2 actually suppresses water binding until RH40ish Essentially, CO2 is better at adsorbing to empty pores than water, while water is better at sticking once at least one water molecule has adsorbed

	 to a pore, explaining why at first, CO2 precluded water from being adsorbed compared to regular water adsorption without competing with CO2 No competitors have this suppression feature, so none are as effective at not adsorbing water CALF-20 also stays stable even after used for a week, no significant performance loss
Research Question/Problem/ Need	How can MOFs be used for post-combustion carbon capture with little impact from water vapor?
Important Figures	$ \begin{array}{c} \textbf{B} \\ \textbf{O} \\ \textbf$
VOCAB: (w/definition)	Physisorb = sticking to/adsorbing without chemical bonding (caused by weak Van der Waal forces) Å is an Ångström, 10^-10m
Cited references to follow up on	https://onlinelibrary.wiley.com/doi/full/10.1002/adsu.201800080 https://pubs.acs.org/doi/full/10.1021/acsami.9b08487 https://www.nature.com/articles/natrevmats201745
Follow up Questions	 Can CALF-20s efficiently desorb the captured carbon? What are some potential uses of the captured carbon from the MOF? Can such an MOF be used to harvest CO2 in a non-post-combustion situation?

Article #9 Notes: These 2 companies can pull CO2 straight from the air

Source Title	These 2 companies can pull CO2 straight from the air
Source citation (APA Format)	Myers, J. (2020, Jun 26). <i>These 2 companies can pull CO2 straight from the air</i> . World Economic Forum. https://www.weforum.org/agenda/2020/06/direct-air- capture-co2-environment-climate/
Original URL	https://www.weforum.org/agenda/2020/06/direct-air-capture-co2-environment- climate/
Source type	Website
Keywords	DAC, adsorption/absorption
#Tags	#carboncapture #DAC
Summary of key points + notes (include methodology)	 DAC is different from typical methods of carbon capture bc it captures CO2 directly from air rather than from flue gas released from power plant (point source capture / post-combustion capture) Two considered companies use fans to collect air Company 1: Adsorption of CO2 by a filter material, collector is closed and temp increased to release high concentration CO2 Company 2: Uses potassium hydroxide solution to bind w CO2 molecules, forms carbonate salt, then salt is processed to produce CO2 CO2 can be stored or used, underground storage or synthetic fuels Not mentioned in the article, but some of the flaws in these systems seem to be with taking the air in (in order for CO2 to be captured) and with the release process of the CO2 (high temperatures etc in order to get the CO2 out of the filter or liquid sorbent) This article explains two methods two companies are using to capture carbon directly from regular air. They both got air by using fans, but the first company used a filter material to adsorb CO2 while the second used a liquid sorbent. They appeared to have not fully optimized the air intake portion of this method, or the CO2 desorption portion.
Research Question/Problem/ Need	How are some companies capturing carbon dioxide directly from the air rather than at a point source?

He 2

Important Figures	ATMOSPHERE AIR AIR AIR AIR AIR AIR AIR AIR	
VOCAB: (w/definition)	N/A	
Cited references to follow up on	https://carbonengineering.com/our-technology/ https://news.climate.columbia.edu/2019/05/29/co2-utilization-profits/ https://climeworks.com/direct-air-capture	
Follow up Questions	 How can the intake of air of this system be further improved/optimized? How can the CO2 desorption process of this system be further optimized? How can the effectiveness of CO2 (% of CO2 successfully removed from air) be further increased? 	

Article #10 Notes: A review on metal-organic frameworks: Synthesis and applications

Source Title	A review on metal-organic frameworks: Synthesis and applications	
Source citation (APA Format)	Safael, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A., & Khatami, M. (2019). A review on metal-organic frameworks: Synthesis and applications. <i>TrAC</i> <i>Trends in Analytical Chemistry, 118</i> , 401-425. https://doi.org/10.1016/j.trac.2019.06.007	
Original URL	https://www.sciencedirect.com/science/article/abs/pii/S0165993619301840	
Source type	Scholarly Journal	
Keywords	MOF applications	
#Tags	#MOFs	
Summary of key points + notes (include methodology)	 MOF = metal ions or clusters connected by organic ligands 3 main: topology of framework, metal ion center, organic linkers MOF pore size and porosity can vary a lot By changing the metal ions / clusters or organic ligands, physical and chemical properties and be changed for higher selectivity for a specific chemical reaction Polyamines, carboxylates, pyridyl and cyano groups, crown ethers, and phosphonates are common ligands There are a variety of methods of MOF synthesis and a variety of uses of these frameworks, including removing toxic pollution from water, gas adsorption, and serving as a catalyst 5 areas: adsorption, catalysts, sensors, electrochemical charge storage (batteries), and drug delivery systems MOFs are an emerging new material that has a lot of potential in a lot of fields, such as adsorption, catalysts, sensors, batteries, and drug delivery. 	
Research Question/Problem/ Need	What are some uses of MOFs?	

Important Figures	Table 2 Selected applications of metal-organic framework.			
	MOF	Swithetic method	Amlication	Ref.
	DEADTA SATURATA IS	Index details	Reference al advantages advantages and advantages and	10001
	PSA020-M0E0Fe30a UN4CM-151	Hydrochermal	Determination of glyptosate, glutosinate, bialaphos, and their main metabolites Advertises of light hydrocarbons	1911
	MG@MIL-100-B	Solvothermal	Determination of the endogenous catecholamines	192
	FeyDy#TMU-21	Hydrothermal	Adsorbent for pyrethroids	[93]
	21F-8 588_57.7Ee	Ultrasonic assisted	Removal of tetracycline and oxytetracycline antibiotics Advectore for circultowaria antibiotic	1994
	Fe-Co: MOF-74	Hydrothermal	Removal of arsenic	1961
	ME-53(AD-CO	Hydrothermal	Removal of assenic	[97]
	UID-66 (HP-UID-66)	Hydrothermal	Extraction of uranium	[98]
	{(Me ₂ NH ₂) ₂ [Zn ₀ (µ ₄ =0)(ad) ₄ (HPDC) ₄]) ₄	Hydrothermal	Uranium sorption	199
	HPW/2r(BTC)	Hydrothermal	Adsorption of benzothiophene	11015
	MIL-101(Fe) @PDopa@Fe3O4	Solvothermal	Adsorbent for removal of methyl red and malachite green	[107]
	FeyO4-NH;@HIKUST-1@PDES-MSPE	Hydrothermal	Separation of ationic dyes	[103]
	P ₂ W ₁₀ # MIL-101[Cr) {[(CH ₂) ₂ NH ₂][2 _M (₁₁ -OH)(₁₄ -O)(NS8PDC) ₃ (H ₂ O) ₂] DMF 12H-O).	Hydrothermal	Removal of organic dyes Adsorption and separation of organic dyes	[104]
	Mn(ii)-MOF (1)	Solvothermal	Adsorption of dyes	[106]
	ZU-66	Hydrothermal	CO ₂ separation	[107]
	[2hg(NDC)g(DABCO)]a MR_1010MM_X_V	Hydrothermal	CH ₄ /CO ₂ gas separation	11093
	ICortepa, H.O.DMFL	Solvothermal	CO ₂ Adsorption	11105
	ZIF-12	Hydrothermal	Rn Adsorption	11112
	{Cft(4,4'-bpy)_{H_2}0)_{2}(Cf0_4)_{2}(2,4'-bpy)_{2}H_20	Hydrothermal	Gas adsorption	11171
	0.4M-CuIPMIL-100(Fe)	Solvothermal	Adsorptive separation of C ₂ H ₂ /C ₂ H ₂ matures	1113
	Fearl/215-8	Hydrothermal	Choygen Reduction Catalysts	11198
	CrashPdos/MIL-101-NHz	Hydrothermal	Catalytic activity for the generation of hydrogen from formic acid	12200
	Ru ₂ -NHC-MOF	Solvothermal	catalytic hydrogenation of CO ₂ to formic acid	[121]
	VNU-21 (FegETC)(EDB): 12.27 Hy0)	Solvothermal	heterogeneous catalyst Coholt outshutte	1223
	KIL-SS(AL) (ALUT)-[O]C-C(H4-CO]]) (CH-COOH)-IM(HSD/8H-13D-66	Hydrothermal	Catalyst in biodiciel swithesis	12.241
	ME-101-NH ₂	Hydrothermal	Catalyst for the synthesis of 3-aryl-2-oxazolidinones	12257
	ILAPUEN	Post impregnation	Catalysts for the cycloaddition of epoxides to CO2	12261
	UNMOF/g-CJNs	Ultrasonic assisted	Photocatalytic H ₂ production	11271
	NH2-MIL-125	Solvothermal	Photocatalytic H ₂ Restocatalytic H ₂	13 500
	(Zno(L)-(nhta)-ln (1)	Hydrothermal	Photocatalytic degradation Rhodamine B	13 300
	[Cu ₂ (L1)5DMF], (1)	Hydrothermal	photocatalyst for the photodegradation of organic dyes	1311
	Au0P00MOF-74, PI/MOF-74 and PL/Au0P00P0F-74	Solvethermal	ehotocatalized CQ-	11321
	NH2-MIL-125(TI) ZnNi MOREZnO	Hydrothermal	Photoelectrochemical water outlation photoelectrochemical	134
			water oxidation	
	AC/MIL-88B (Fe)	Hydrothermal	catalysts to degrade Reactive Red 198	1351
	POPNINSMOF	Hydrothermal	Oxygen electrocatalysis	136
	MoS. (Co. W/F	Badrothermai	Electrocatalytic butrown evolution reaction	1401
Ś.	Ni(Fe)-MOF	Solvothermal	Electrocatalytic	1411
			Water Oxidation	
	CUP-1-Ni	Hydrothermal	Electrocatalytic	143
		10 A 10 A	Water Oxidation	
	V-O-N	Solunthermal	Electro-catalytic oxygen Electro-catalytic No	114.31
	FeyO4/Ni-BTC	Hydrothermal	Biocatalyst for biosynthesis of 5-adenosylmethionine	1451
	MOF-808	Hydrothennial	Biocatalyst	[146]
	[Cus(nbpt)_(H2O)2(OH)_[J(DMF)_(H2O) (1)	Solvothermal	Cyanosilylation of aidehydes and ablation of human laryngocarcinoma cells	147
	UIO-68 NMOF	Hydrothermal	Biocatalytic decomposition of the duplex capping units Biocatalytic for Chon southering of homeoscalar	148
	MIL-101-NH-SO(H	Solvothermal	Humidity sensing	1451
	MIL-125/TiO ₂	Hydrothermal	QCM framidity sensor	156
	HKUST-1	Hydrothermal	OF-MOF sensor	137
	[Disc(MTBC)(OH)_(DMF)_{3}(H_2O)_{4}]2DMF7H_2O	Solvethermal	Sensing of Cu2+ and UO22+	158
	En 20 albath - 1000 En	Hadrothermal	Sensor for offection of aspartic acid Electrochemical sensor for chlorosomic acid	158
	Zn-BDC-TED	Hydrothermal	Immunosensing for C-reactive protein	1511
	[Co(NPDC)(bpee)].DMF.2H_20	Solvothermal	Luminescent sensing for MnO ⁴⁷ and Hg ²⁷	[162]
	[Tb(pddb)phen(ox) _{n:sla}	Hydrothermal	luminescent probe for the 2-thiazolidinethione-4-carboxylic acid	163
	ZP-DIO-66-NJHz	Solvothermal	Hubrescent sensor for phosphate and 4-nitrobenzaldehyde	164
	(IERGINO SUP-ORIGCE REO) (CNO2 (UR20) SUP Co-MORROOF	Historbermal	Antasensur for detection of orotetracycline residues	1661
	MIL-101	Solvothermal	Aptasensor for extraction of ochratoxin A	167
	Zn-Ag_O@PEDOT.P55	Solvothermal	Battery can be solely charged by wind energy	1681
	UIO-66	Solvothermal	Electrolyte additive for Li-metal battery	[169]
			(continued on new	it page)
	Table 2 (continued)			
	MOE	Synthetic method	Application	Ref.
	Cu_(CuTCIP)	Solvothermal	tithium-sulfur hattery	[170]
	ZIF-67@Se@MnDg	Hydrothermal	Lithium-selenium battery	1171]
	LI-UIO-66(MOD)	Mechanochemical	Lathnum sulfur battery	1.72
	MORSDC	Heliothermal	Collum-on batteries	1174
	Ni-MOP	Solvothermal	Fabricated supercapacitie electrodes	175
	NICo-LDH@NI-CAT	Hydrothermal	Supercapacitor	176
	CoCuNe-bdc	Hydrothermal	Supercapacitor	177
	CD-MUP NUMPE	Hydrothermal	Supercapacitor	178
	(Fe(C_N_0))(H_0))	Solvothermal	proton-exchange membrane fael cells	12 801
	$[](Me_2NH_2)_2(SO_4)]_2[Zn_2(\alpha K)_3]]n$	Solvothermal	Fuel cells	1833
	CMC/MOF-5/GO	Hydrothermal	Drug delivery	187
	ZIF-8@alginate NPs	Mechanochemical	Drug delivery	1881
	[Gd(BCB)(DMF))(H ₂ O) ₂	Solvothermal	Drug delivery	11293
	Cu-MOE/IBLIDCM	Mechanochemicat	Drug delivery Drug delivery	124623
	NU-1000 and NU-501	Hydrothermal	Drug delivery	1152
	CD-MOE-1 and CD-MOE-2	Solvothermal	Drug delivery	11933
	CD-MOF	Vapor diffusion	Drug delivery	[2:94]

He	25
----	----

	The table above displays various MOFs and their potential uses/applications	
VOCAB: (w/definition)	N/A	
Cited references to follow up on	https://doi.org/10.1039/C8NJ04947E https://doi.org/10.1021/acssuschemeng.8b04916 https://doi.org/10.1016/j.inoche.2018.12.003	
Follow up Questions	 How long lasting are certain MOFs, and does the method of synthesis play a factor in why? How are the materials that make up MOFs produced? How can the stability/life of MOFs be extended/optimized? 	

Patent #1 Notes: Activated carbon-metal organic framework composite materials with enhanced gas adsorption capacity and process for the preparation thereof

Source Title	Activated carbon-metal organic framework composite materials with enhanced gas adsorption capacity and process for the preparation thereof	
Source citation (APA Format)	Bajaj, H. C., Somani, R. S., Rallapalli, P. B., Patil, D., Prasanth, K. P., Manoj, C. R., & Choudary, N. V. (2016). Activated carbon-metal organic framework composite materials with enhanced gas adsorption capacity and process for the preparation thereof (U.S. Patent No. 9,433,919). U.S. Patent and Trademark Office. https://patents.google.com/patent/US9433919B2/en	
Original URL	https://patents.google.com/patent/US9433919B2/en	
Source type	Patent	
Keywords	MOF synthesis, carbon, gas adsorption	
#Tags	#MOF	
Summary of key points + notes (include methodology)	The researchers used a "void space filling method" in MOFs, which was essentially to add activated carbon to an MOF (Cu-BTC) during MOF synthesis to create a new MOF with increased gas adsorption (of methane).	
Research Question/Problem/ Need	How can carbon be used to improve MOF adsorption of gas?	
Important Figures	$\int_{10}^{200} \int_{10}^{100} \int_{100}^{100} \int_{100}^{10} \int_{100}^{100} \int_{100}^{100} \int_{100}^{10} \int_{10}^{10} \int_$	

VOCAB: (w/definition)	Activated carbon = carbon that is processed to be very porous
Cited references to follow up on	https://patents.google.com/patent/US8227375B2/en https://patents.google.com/patent/US8883676B1/en?peid=6243676a77d90%3A6 12%3Af0926196 https://patents.google.com/patent/CN112705167A/en?peid=624367945dad8%3A 705%3A72df2da6
Follow up Questions	 Can other molecules be added to MOFs to improve gas adsorption? How efficient or costly is the synthesis of this new MOF? Can this product be optimized for other gases such as CO2?

Patent #2 Notes: Gas adsorption on metal-organic frameworks

Source Title	Gas adsorption on metal-organic frameworks		
Source citation (APA Format)	Willis, R. R., Low, J. J., Faheem, S. A., Benin, A. I., Snurr, R. Q., & Yazaydin, A. O. (2012). <i>Gas adsorption on metal-organic frameworks</i> (U.S. Patent No. 8,227,375). U.S. Patent and Trademark Office. https://patents.google.com/patent/US8227375B2/en		
Original URL	https://patents.google.com/patent/US8227375B2/en		
Source type	Patent		
Keywords	MOF, hydration		
#Tags	#MOF		
Summary of key points + notes (include methodology)	After water treatment, the MOF Cu-BTC displayed significantly larger gas adsorption abilities than Cu-BTC that was not hydrated.		
Research Question/Problem/ Need	How does the hydration of an MOF impact its efficiency at gas adsorption?		
Important Figures	$ \\ Final equation (Cuber C_expt) \\ find (Cubr C_e$		
VOCAB: (w/definition)	N/A		

Cited references to follow up on	https://pubmed.ncbi.nlm.nih.gov/17177438/ https://patents.google.com/patent/US20050154222A1/en?peid=62436bf0e8a38 %3A143%3A4c48cfd2 https://patents.google.com/patent/US20070248852A1/en?peid=62436c0508400 %3A146%3A98efe13f
Follow up Questions	 Does water treatment have the same gas adsorption improving effect on other MOFs as well? Why does MOF gas adsorption increase after water treatment? Can treatment with other molecules/substances produce similar beneficial results?

Article #11 Notes: Recent advances in metal-organic frameworks: Synthesis, application and toxicity

Source Title	Recent advances in metal-organic frameworks: Synthesis, application and toxicity		
Source citation (APA Format)	Zhang, Q., Yan, S., Yan, X., & Lv, Y. (2023). Recent advances in metal-organic frameworks: Synthesis, application and toxicity. <i>Science of the Total Environment, 902.</i> https://doi.org/10.1016/j.scitotenv.2023.165944		
Original URL	https://www.sciencedirect.com/science/article/abs/pii/S0048969723045692?via% 3Dihub		
Source type	Scholarly Journal		
Keywords	MOF synthesis, Applications of MOFs		
#Tags	#MOF		
Summary of key points + notes (include methodology)	There are four main types of MOFs (IR-MOF, MIL, ZIF, UiO). Some existing MOF synthesis methods include hydro/solvothermal, microwave-assisted, sonochemical, mechanochemical, electrochemical, among others, though most involve the use of a solvent and special environmental conditions during the synthesis. There are many different applications of MOFs, though I am mostly interested in the gas adsorption, gas storage, or gas separation properties of MOFs. MOFs can be inhaled and absorbed into the bloodstream, but the toxicity of MOFs if ingested or absorbed is not as studied.		
Research Question/Problem/ Need	What are some methods of MOF synthesis, applications of MOFs, and downsides to MOFs regarding their toxicity?		
Important Figures	Table 3 T		

He	31
----	----

VOCAB: (w/definition)	Hydrothermal: relating to hot water Solvothermal: relating to high temperatures or pressures Sonochemical: using ultrasound (in synthesis)				
Cited references to follow up on	CO2/CH4 separation: <u>https://doi.org/10.1039/d2qm00802e</u> CO2/C2H2 separation: <u>https://doi.org/10.1039/d2ta07473g</u> CO2/N2 separation: <u>https://doi.org/10.1016/j.memsci.2022.121107</u> CO2/H2 separation: <u>https://doi.org/10.1021/acssuschemeng.1c03443</u>				
Follow up Questions	 Which synthesis method is generally the most environmentally friendly and how can it be optimized for greater time efficiency? Which synthesis method is the most time efficient and how can it be optimized to have a lesser impact on the environment? What methods of MOF synthesis are used in industrial settings and how can industries make a shift to a more optimized method? 				

Article #12 Notes: Direct air capture of CO2 in designed metalorganic frameworks at lab and pilot scale

Source Title	Direct air capture scale	Direct air capture of CO2 in designed metal-organic frameworks at lab and pilot scale					
Source citation (APA Format)	Zhang, X., Zhao, H., Yang, Q., Yao, M., Wu, Y., & Gu, Y. (2023). Direct air capture of CO2 in designed metal-organic frameworks at a lab and pilot scale. <i>Carbon Capture Science & Technology, 9</i> . https://doi.org/10.1016/j.ccst.2023.100145						
Original URL	https://www.sciencedirect.com/science/article/pii/S2772656823000490?via%3Di hub						
Source type	Scholarly Journal						
Keywords	MOF, direct air ca	ipture					
#Tags	#DAC #MOF						
Summary of key points + notes (include methodology)	Direct air capture (DAC) has to selectively absorb CO2 from a mixture with a far lower concentration of carbon dioxide than its counterpart, point-source capture that captures CO2 directly from power plant emissions. The paper explains some of the thermodynamics behind CO2 capture and then certain strategies that can be used to optimize a MOF, introducing hybrid ultramicroporous materials (HUMs) and their potential to capture CO2 without energy-consuming chemical reactions involved. They also emphasize the importance of the selectivity of CO2/H2O and the potential for CO2 and H2O co-capturing and end off explaining how the discussed topics could be applied, eventually, in an industrial setting.						
Research Question/Problem/ Need	How can MOFs be optimized for DAC and what are some current impediments or promising findings?						
Important Figures	Table 1 Volume fractions and main physicochemical properties of CO ₂ and other typical components of air [60].						
	Gas	CO2	N ₂	0 ₂	Ar	H ₂ O	
	Volume fraction Kinetic diameter (Å) Boiling point (K) Polarizability $(\times 10^{-25} \text{ cm}^3)$ Quadrupole moment $(\times 10^{26} \text{ esu cm}^2)$	~400 ppm 3.3 194.7 29.11 4.30	78.084 % 3.64-3.80 77.15 17.403 1.52	20.946 % 3.467 90.15 15.812 0.39	0.934 % 3.542 87.25 16.411 0	0-4 % 2.641 373.15 14.5	
	Table 1 shows many of the different properties or characteristics of some of the main components of air.						

He 33

	Table 3 The uptake capacity, Q _{av} and mechanisms of MOFs for DAC.						
	MOFs	Uptake		Q _{at} (kJ/mol)	Main mechanisms	Desorption condition	Ref.
		Uptake capacity (mmol/g)	CO ₂ (ppm)				
	Mg-MOF-74 Mg-IRMOF-74-II	0.088	400	47 44	OMSs OMSs	180 °C Not available	[34]
	HKUST-1	0.05	400	34	OMSs	140 °C	[34]
	UiO-66	0.02	400	Not available	OMSs	100 °C	[57]
	ZIF-8	0.05	400	27	OMSs	100 °C	[57]
	MIL-101(Cr)	1.24	400	Not available	Vinotic signing / Lauris interactions	100 °C Vacuum 222V	[37]
	SIFSIX-3-Zn	0.13	400	45	Kinetic sleving / Lewis interactions	Not available	[64]
	SIFSIX-3-NI	0.29	400	51	Kinetic sieving / Lewis interaction	Not available	[64]
	SIFSIX-2-Cu-i	0.68	400	32	Kinetic sieving / Lewis interaction	Not available	[64,65]
	NbOFFIVE-1-Ni	1.30	400	54	Kinetic sieving / Lewis interaction	Vacuum, 328 K	[5]
	SIFSIX-18-Ni-p	0.96	400	52	Kinetic sleving / hydrophobic interaction	Not available	[66]
	TIFSIX-3-Co	1.05	400	Not available	Kinetic sleving / Lewis interaction	Not available	[67]
	GeFSIX-3-Ni	1.07	400	56	Kinetic sieving / Lewis interaction	Not available	[68]
	GeFSIX-3-Co	0.30	400	39	Kinetic sieving / Lewis interaction	Not available	[68]
	[Zn(ZnOH)4(bibta)3]	2.20	400	42	Covalent interactions	100 °C	[69]
	Zn ₅ (OH) ₄ (btdd) ₃	1.54	400	Not available	Covalent interactions	100 °C	[70]
	Mg ₂ (dobdc)/Pell	3.89	400	118	Covalent interactions	Not available	[72]
	Mg2(dobpdc)-en	2.83	390	Not available	Covalent interactions	Simulated air purge, 150 'C	[73]
	Mg2(dobpdc)-mmen	3.00	400	74	Covalent interactions	N ₂ purge, 150 °C	[63,74]
	Cr-MIL-101-SO3H-TETA	1.12	400	87	Covalent interactions	Not available	[75]
	NbOFFIVE-1- Ni@PA	1.44	400	Not available	Covalent interactions	Water vapor, 378 K	[76]
	MIL-101(Cr)-TREN MIL-101(Cr)-PEL800	1.20	400	Not available	Covalent interactions	Not available	[77]
	properties, as	s the CO2 upta well as the so	ake of r ources/	nany di paper tl	nat back up the data	eir associated I.	
VOCAB: (w/definition)	Isosteric: has the same number of electrons Entropy: unavailable energy in a closed thermodynamic system						
Cited references to follow up on	http://refhub.elsevier.com/S2772-6568(23)00049-0/sbref0118 http://refhub.elsevier.com/S2772-6568(23)00049-0/sbref0131 http://refhub.elsevier.com/S2772-6568(23)00049-0/sbref0066						
Follow up Questions	 What are the pros and cons or using HUMs instead of MOFs in DAC? What specific changes to MOF structure have demonstrated improvements in CO₂ capture efficiency and why? What specific changes to MOF structure have demonstrated an increase in CO2 selectivity over H2O? 						

Article #13 Notes: Direct Capture of CO2 from Ambient Air

Source Title	Direct Capture of CO2 from Ambient Air
Source citation (APA Format)	Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A., & Jones, C. W. (2016). Direct Capture of CO2 from Ambient Air. <i>Chemical Reviews, 116,</i> 11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173
Original URL	https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00173
Source type	Scholarly Journal
Keywords	Direct air capture of carbon, CO2 emissions
#Tags	#DAC
Summary of key points + notes (include methodology)	The article provides many different approaches for scalable DAC including aqueous hydroxide sorbents, solid alkali carbonates, and organic-inorganic hybrid sorbents, the latter of which MOFs fall under. It provides a lot of justification as to why CO2 emissions need to be reduced, and why DAC in particular is a very promising path to explore. It also explains why physisorbent materials such as MOFs are gaining attention: compared to chemisorbent materials, much less energy is needed for the regeneration of physisorbent materials because no chemical interactions occur between the sorbent and the sorbate. The article introduces the possibility of amine tethered MOFs to further increase the CO2 uptakes of certain MOFs, highlighting EN-Mg 2(dobpdc).
Research Question/Problem/ Need	What are the pros and cons of some approaches to DAC?
Important Figures	Figure 19. Range of physisorbents investigated by Zaworotko and co-workers. Reprinted with permission from ref 186. Copyright 2015 Wiley. The figure above shows visually depicts some of the physisorbent MOFs that have been previously studied for their ability to absorb CO2. The figure below depicts the absorption capacity of various MOFs, some with amines.

	Table 5, MO	Fs Used	for Di	rect Air	Capture:	Amine-		
	Tethered (If Applicable) And Experimental Conditions Are Noted As Well ^a							
	adsorption capacity (mmol of T CO ₂ CO ₂ /g of MOF amine (°C) (ppm) sorbent) method ref							
	SIFSIX-3-Ca SIFSIX-3-Xa SIFSIX-3-Ni HKUST Mg-MOF-74 Mg_(dobpdc) Mg_(dobpdc) Mg_(dobpdc) b Approximate average T = temperature dd lated from a 1 N,N'-dimethylk programmed d	EN MMEN EN value. San 23.4 °C a enoted in 1 pure CO ₂ ethylenedia esorption;	25 25 23 23 23 23 25 25 25 25 25 mples e ind 499 manusc isother mine; TGA, t	400 400 400 th 400 th 400 390 390 390 390 390 390 sxposed 1 % RH. ript. ^d Ac % RH. vol, volt thermogr	1.24 0.13 0.18 0.05 0.14 1.51 0.13 ^d 2.0 ^d 2.8 ^d o lab atmo 'Approximat isorption cap ethylenedii immetric; TPI avimetric an	vol. vol. TPD TPD TGA vol. vol. vol. vol. sphere wi e value. sacities in minie; M), temper alysis.	191 210 186 186 205 206 209 th an Room terpo- MEN, ature-	
VOCAB: (w/definition)	Physisorbent: absorbs with physical interactions rather than chemical interactions Chemisorbent: absorbs with chemical interactions rather than physical interactions Sorbate: the substance being absorbed							
Cited references to follow up on	https://pubmed.ncbi.nlm.nih.gov/20730980/ https://pubmed.ncbi.nlm.nih.gov/26440308/ https://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee42328j							
Follow up Questions	 Why might amines increase CO2 uptake? What particular properties are common among beneficial amines and the MOFs they are tethered to? How does the regeneration of chemisorbents differ from the regeneration of physisorbents like MOFs? 							

Article #14 Notes: Back to the Basics: Developing Advanced Metal-Organic Frameworks Using Fundamental Chemistry Concepts

Source Title	Back to the Basics: Developing Advanced Metal-Organic Frameworks Using Fundamental Chemistry Concepts			
Source citation (APA Format)	Kirlikovali, K. O., Hanna, S. L., Son, F. A., & Farha, O. K. (2023). Back to the Basics: Developing Advanced Metal-Organic Frameworks Using Fundamental Chemistry Concepts. <i>ACS Nanoscience Au, 3</i> (1), 37-45. https://doi.org/10.1021/acsnanoscienceau.2c00046			
Original URL	https://pubs.acs.org/doi/10.1021/acsnanoscienceau.2c00046			
Source type	Scholarly Journal			
Keywords	Metal-organic frameworks, chemistry, stability			
#Tags	#MOF			
Summary of key points + notes (include methodology)	This paper explains the history of MOFs and also explores the chemistry behind how these frameworks function. The stability of a MOF is reliant on chemistry concepts such as the HSAB theory and the crystalline structure of MOFs can be further improved by adding modulators during synthesis. This paper focuses less on applications and more on ways one can increase stability by employing certain methods during synthesis.			
Research Question/Problem/ Need	How can chemistry concepts be applied to increase the stability of MOFs by making changes during synthesis?			
Important Figures	The figure below depicts some of the causes for different types of stability.			

	But entransition But framework with But entransition But entran
VOCAB: (w/definition)	"Chemically robust": essentially means something is stable even under fairly extreme conditions Hydrolytic: relating to reactions with water
Cited references to follow up on	https://doi.org/10.1038/ncomms15369 https://doi.org/10.1021/acsami.1c01329?urlappend=%3Fref%3DPDF&jav=VoR&re l=cite-as https://doi.org/10.1126/science.aaz8881
Follow up Questions	 What sorts of modulators have shown promise in increasing the stability of certain MOFs? What effects does the inclusion of modulators during synthesis have on the CO2 uptake of certain MOFs? Are there any solvents that appear to improve the stability of MOFs?

He 37

Article #15 Notes: Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures

Source Title	Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures
Source citation (APA Format)	Mahajan, S. & Lahtinen, M. (2022). Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures. <i>Journal of Environmental Chemical Engineering</i> , <i>10</i> (6). https://doi.org/10.1016/j.jece.2022.108930
Original URL	https://www.sciencedirect.com/science/article/pii/S2213343722018036
Source type	Scholarly Journal
Keywords	Metal-organic framework, chemisoption or physisorption
#Tags	#MOFs
Summary of key points + notes (include methodology)	The paper explores a variety of different techniques to increase the CO2 uptake of MOFs, including using open metal sites (OMSs), which could have amines attached to it in order to chemisorb CO2 from the atmosphere. Regarding MOF stability in the presence of water, the article proposes metalated-ligand exchange (MLE), which has to do with exchanging the typical ligand bdc with another ligand and a collection of metal ions, and also HUMs due their physisorptive properties resulting from bridging anions.
Research Question/Problem/ Need	What are some strategies that can be employed to increase the CO2 absorption of MOFs?
Important Figures	1000 ACC ACC 4000
	The table above depicts the CO2 capture capacities for several MOFs. The paper also includes countless tables depicting the CO2 uptakes of MOFs with certain modifications to metal sites, linker molecules, and more.
VOCAB: (w/definition)	N/A

	https://doi.org/10.1007/s10450-019-00118-1 https://doi.org/10.1016/j.micromeso.2013.06.023				
Follow up Questions	 How might certain MOF structures influence stability in the presence of water or chemical stability? How do certain structures promote chemisorption or physisorption of CO2? How does reuse of MOFs affect its stability or CO2 uptake? 				

Article #16 Notes: Computational screening of metal-organic frameworks for ammonia capture from humid air

Source Title	Computational screening of metal-organic frameworks for ammonia capture from humid air
Source citation (APA Format)	Liu, Z., Wang, X., Liu, Y., Li, L., & Li, S. (2021). Computational screening of metal- organic frameworks for ammonia capture from humid air. <i>Microporous and</i> <i>Mesoporous Materials, 331.</i> https://doi.org/10.1016/j.micromeso.2021.111659
Original URL	https://www.sciencedirect.com/science/article/pii/S1387181121007848?via%3Di hub
Source type	Scholarly Journal
Keywords	MOFs, ammonia capture, computational screening
#Tags	#simulations #MOFs
Summary of key points + notes (include methodology)	In order to identify potential MOFs to be used in the capture of ammonia directly from the air, this paper used computational methods in order to test a variety of MOFs from the CoRE database in order to find the to find the best candidates for ammonia capture. Using the data from the CoRE database, they ran GCMC simulations of ammonia absorption and then tested its selectivity over water too, developing a complex system of equations attempting to quantify different criteria and their effect on overall MOF performance. They used RASPA 2.0 for a more visual view.
Research Question/Problem/ Need	What MOFs can be used in the direct air capture of ammonia?
Important Figures	CoRE MOFs database with DDEC charge (2932 MOFs) calculation Structural characteristics PLD > 2.60 A & ASA > 0 m ² /g more structural characteristics yes MOFs for simulation GCMC simulation GCMC simulation whith > 0.05 mol/kg yes High-performing adsorbents Fg. 1. Schward: dagsm of the (sequence computational methodology used in the paper)

He	41
----	----

	DD of NH, adsorption (a) AFOVAT	DD of H ₂ O adsorption	Snapshot Oendy	
		中国		
	The figure above s the tested MOFs,	shows the density simulated with RA	distributions of ammon SPA 2.0.	ia and water in three of
VOCAB: (w/definition)	N/A			
Cited references to follow up on	http://refhub.else http://refhub.else http://refhub.else	evier.com/S1387-1 evier.com/S1387-1 evier.com/S1387-1	811(21)00784-8/sref26 811(21)00784-8/sref23 811(21)00784-8/sref33	
Follow up Questions	 Why do so other area What pro Does high ammonia 	ome areas of a MC as? perties are exhibit er selectivity for a uptake overall?	DF tend to absorb more ed by sites with higher o mmonia tend to correla	of a substance over densities of ammonia? te with higher

He 42

Article #17 Notes: How to Make Metal-Organic Frameworks (MOFs)

Source Title	How to Make Metal-Organic Frameworks (MOFs)
Source citation (APA Format)	Wood, A. (n.d.). <i>How to Make Metal-Organic Frameworks (MOFs)</i> . Ossila. https://www.ossila.com/pages/how-to-make-metal-organic-frameworks
Original URL	https://www.ossila.com/pages/how-to-make-metal-organic-frameworks
Source type	Website
Keywords	MOF synthesis,
#Tags	#MOFsynthesis
Summary of key points + notes (include methodology)	This website depicts many methods of synthesis and provides visual aids for better comprehension. Similarly to article #14, it mentions MOF modulators that help control MOF crystallization, increasing stability, and it lists several modulators including acetic acid, water, ammonia, hydrochloric acid, and sulfuric acid. It explains the conditions needed for each method of synthesis, as well as commonly used solvents and commonly synthesized MOFs that use that method.
Research Question/Problem/ Need	What are some methods used to synthesis MOFs and what are some of their pros and cons?
Important Figures	Organic Linker Unreacted Reagents Synthesis Wishing Motion Collection Motion Collection Solvent Solvent Solvent Solvent

	Synthetic Method	Advantages	Disadvantages
	SolvothermatHydrothermal	Crite-alep synthesis Can access single crystats Moderate temperature	Long relation time (Instituys) Requires more solven! Easy to produce unwanted by-products
	Microweve-assisted	Flapid (mimi) High putty Uniform morphology Eco-triandly	Official to get single crystate Not yet scalable
	Electrochemical	No need for metal salts Mild reaction conditions Guick (ms)	Flequires N ₂ atmosphere Varied structure Lower yield
	Mechanochemical	Room temperature Less flazardous by-products Rapid (mins) Eco-intendy	Desneased pore volume Lower crystallinity Lower yield
	Socochemical	Guick (tens of mins) Eso-hiendly	Difficult to get single crystals
	There are also n will refer to whe	nany additional figures c en I'm simulating synthe	depicting each method of synthesis that I sis.
VOCAB: (w/definition)	N/A		
Cited references to follow up on	https://doi.org/10.1021/acsomega.2c05310 https://doi.org/10.1021/acsnanoscienceau.2c00046 https://doi.org/10.1039/D1MA00719J		
Follow up Questions	 How do the listed modulators effect MOF synthesis and improve MOF crystallinity? Which synthesis method appears to be the most scalable and why? Which synthesis method has the most room for growth/improvement and what are some methods to improve it? 		

Article #18 Notes: Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture

Source Title	Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture
Source citation (APA Format)	Tao, Y. R., Zhang, G. H., & Xu, H. J. (2022). Grand canonical Monte Carlo (GCMC) study on adsorption performance of metal organic frameworks (MOFs) for carbon capture. <i>Sustainable Materials and Technologies, 32</i> . https://doi.org/10.1016/j.susmat.2021.e00383
Original URL	https://www.sciencedirect.com/science/article/pii/S221499372100138X?ref=pdf_ download&fr=RR-2&rr=8eef35e7ccee3045
Source type	Scholarly Journal
Keywords	GCMC, carbon capture
#Tags	#MOFs #simulation
Summary of key points + notes (include methodology)	This paper uses Grand Canonical Monte Carlo simulations to analyze the CO2 absorption of three MOFs: MOF-5, Mg-MOF-74, and ZIF-8. The parameters inputted into the simulations were generated from the Cambridge Crystallographic Data Center, and many of the equations used are provided in the article. After the simulation, the results were checked against pre-existing experimental studies. The selectivity of CO2/N2 was then tested and they determined that overall, Mg-MOF-74 seemed to perform the best out of the three.
Research Question/Problem/ Need	How can GCMC methods be used in simulating the CO2 absorption of different MOFs?

Important Figures	$\int_{0}^{2} \int_{0}^{2} \int_{0$
VOCAB: (w/definition)	N/A
Cited references to follow up on	http://refhub.elsevier.com/S2214-9937(21)00138-X/rf0075 http://refhub.elsevier.com/S2214-9937(21)00138-X/rf0120 http://refhub.elsevier.com/S2214-9937(21)00138-X/rf0180
Follow up Questions	 What are some potential causes for the discrepancy between the simulated results and the experimental results of MOF-5 and ZIF-8? Why might experimental ZIF-8 have outperformed the simulated results? How can MOF stability under normal conditions / exposure to water be factored into a simulation?

Article #19 Notes: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials

Source Title	Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials		
Source citation (APA Format)	Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C., & Haranczyk, M. (2012). Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. <i>Microporous and Mesoporous Materials</i> , <i>149</i> (1), 134-141. https://doi.org/10.1016/j.micromeso.2011.08.020		
Original URL	https://www.sciencedirect.com/science/article/pii/S1387181111003738		
Source type	Scholarly Journal		
Keywords	Algorithms and tools, porous materials		
#Tags	#simulation		
Summary of key points + notes (include methodology)	This paper compiles many different tools that can be used to calculate the pore size of many porous materials including metal-organic frameworks. They describe various existing methods people used, including a Monte Carlo approach that generates probes into the molecular structure to determine the volume that can be absorbed, though it fails to account for channels that may open up to larger areas but are too small for specific molecules to fit through, causing the simulation to count areas the molecule can technically fit in though it may not be able to get into the area in the first place. The paper then introduces the Voronoi network, which considers how various particles might interact or block each other in a porous material, which ultimately helps with visualizing the surface area, volume, and overall structure or porous materials.		
Research Question/Problem/ Need	What are some algorithms or tools that can be used to computationally analyze the properties of porous materials?		
Important Figures	N/A		
VOCAB: (w/definition)	N/A		
Cited references to follow up on	https://www.tandfonline.com/doi/abs/10.1080/08927022.2011.562502		
Follow up Questions	 What are some further applications of the Voronoi network beyond calculating surface area or volume? Can the existing Monte Carlo system be altered in order to account for its limitations? What are some limitations or pitfalls of the Voronoi network and how can they be addressed? 		

Article #20 Notes: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials

Source Title	RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
Source citation (APA Format)	Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. <i>Molecular Simulation</i> , <i>42</i> (2), 81-101. https://doi.org/10.1080/08927022.2015.1010082
Original URL	https://www.tandfonline.com/doi/full/10.1080/08927022.2015.1010082
Source type	Scholarly Journal
Keywords	Simulation software, nanoporous materials
#Tags	#simulation
Summary of key points + notes (include methodology)	RASPA is a software that combines MC (Monte Carlo) simulations with MD (molecular dynamics) simulations, based upon calculations involving force fields. This article lists the numerous applications of RASPA, including simulating adsorption into different types of structures, screening, and diffusion, which is important to MOFs because diffusion of a substance into a MOFs is as important as adsorption. In addition, equations used in this simulation are provided, and further information about the simulation's code or other details are provided in the references.
Research Question/Problem/ Need	What is RASPA and some of its applications?
Important Figures	N/A
VOCAB: (w/definition)	N/A
Cited references to follow up on	<u>http://dx.doi.org/10.1080/08927020601156418</u> <u>https://www.sciencedirect.com/science/article/pii/S0010854511000701</u> <u>http://dx.doi.org/10.1021/jp051771y</u>
Follow up Questions	 Can RASPA help to visualize adsorption and diffusion in nanoporous materials? Why were configurational-bias MC and continuous fractional component MC chosen over GCMC? What are some drawbacks or areas of improvement for RASPA?