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ABSTRACT

Head-worn devices such as augmented-reality (AR) and smart
glasses introduce a previously overlooked form of audio degrada-
tion: hair noise, caused by the wearer’s hair brushing against device
frames and embedded microphones. To the best of our knowledge,
this phenomenon has not been systematically studied. This paper
addresses this gap through three contributions. First, we conduct a
user study quantifying the perceptual annoyance of hair noise. Sec-
ond, we introduce the Hair Noise Mitigation (HNM) dataset, the
first multi-channel corpus of hair noise collected across diverse real-
world conditions. We further characterize its spectral and spatial
properties, revealing a non-stationary and directionally dependent
nature. Finally, we propose online and offline semi-supervised non-
negative matrix factorization (NMF) methods as benchmark miti-
gation approaches, showing perceptual gains that motivate further
research. Together, these contributions establish hair noise as a dis-
tinct challenge for wearable audio systems and lay the groundwork
for tailored enhancement techniques.

Index Terms— Hair Noise, Smart Glasses, Noise Suppression

1. INTRODUCTION

Augmented-reality (AR) and smart glasses [1] are increasingly en-
abling users to capture and share immersive audio-visual experi-
ences. Equipped with microphone arrays, these head-worn devices
provide spatial audio that enhances realism and presence. However,
their wearable form factor introduces a previously overlooked chal-
lenge: hair noise, caused by the wearer’s hair brushing against device
frames and microphones. Such noise arises during everyday actions
such as brushing, adjusting, or moving hair, as well as rapid head
motions, and can significantly compromise audio quality and user
experience. Its severity and characteristics vary across users and de-
vices, motivating a closer examination of the underlying factors.

Hair noise depends on several factors, including hair length and
texture, user movement, microphone array design, and device fit.
Unlike background noise such as conversations or traffic, hair noise
originates from the wearer’s own interactions with the device and
occurs in close proximity to the microphones, often leading to se-
vere degradations in signal quality. Recordings containing hair noise
typically exhibit a mean SNR of ~8.5 dB for the wearer’s speech,
with subjective evaluations rating them from slightly annoying to
clearly annoying; in extreme cases, the SNR can drop to nearly 0
dB, severely diminishing intelligibility and overall quality.

This issue has also been noted in hearing aids, where users of-
ten resort to improvised hardware fixes shared in online forums and
videos [2, 3]. Yet, to the best of our knowledge, no prior work has
systematically studied the acoustic characteristics of hair noise or
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Fig. 1: Ray-Ban Meta microphone positions, channel numbers and
porting directions (indicated by green arrows).

explored machine-learning-based strategies for its mitigation. We
address this gap through the following contributions.

Perceptual Study of Hair Noise. We conduct a controlled user
study to quantify the impact of hair noise on speech quality. Our
results show that hair noise becomes perceptually disruptive below
5 dB SNR, with ratings dropping to “annoying,” while annoyance
diminishes substantially above 15 dB.

Hair Noise Mitigation (HNM) Dataset and Characterization. We
release the first open-source dataset dedicated to hair noise, consist-
ing of 5-channel recordings collected with Ray-Ban Meta (RBM)
smart glasses [1]. The dataset captures diverse noise patterns from
head movements and hand interactions, enabling spatial and spec-
tral characterization. Our analysis reveals distinct acoustic patterns
tied to microphone placement, highlighting the non-stationary and
directionally dependent nature of hair noise.

Hair Noise Suppression Benchmark. We establish benchmark
suppression results using semi-supervised Non-negative Matrix Fac-
torization (NMF) in both offline and online modes. NMF [4] learns
spectral signatures of hair noise to separate it from speech, providing
a practical baseline for developing advanced enhancement methods
in AR/VR systems and complements existing approaches such as
spectral subtraction [5] and deep learning—based enhancement tech-
niques [6, 7, 8].

The remainder of the paper is organized as follows: Section 2, 3,
and 4 cover the user study, dataset collection, hair noise analysis, and
mitigation method. Section 5 presents results, including evaluations
of offline and online NMF, user study findings, and an ablation study
for the choice of key hyperparameters.

2. PERCEPTUAL USER STUDY OF HAIR NOISE

To understand how hair noise affects subjective audio quality, we
conducted a listening test with 16 participants. Each participant
rated 10 randomized samples of own-voice recordings, where clean
speech was mixed with hair noise at predefined SNRs ranging from
—5 dB to 20 dB. Ratings were given on a 5-point annoyance scale,
where 1 indicates “very annoying” and 5 indicates “imperceptible.”
Figure 2 shows the distribution of ratings across SNR levels. As
expected, samples at —5 dB and 0 dB received predominantly low
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Fig. 2: User perception rat-
ings when Own-Voice is
obstructed by hair noise.

ratings (median rating of 1—2), indicating strong perceptual discom-
fort. Ratings improved progressively with increasing SNR, cluster-
ing around “neutral” (3) at 10 dB and exceeding 4 at 15 — 20 dB.
Clean speech consistently achieved ratings near the maximum value
of 5. These results suggest that hair noise becomes perceptually dis-
ruptive below 5 dB SNR, while annoyance diminishes substantially
at 15 dB or higher.

Importantly, these findings demonstrate that hair noise is not a
negligible artifact, but a perceptually valid problem. Even mild inter-
ference produces annoyance levels comparable to other well-studied
noise sources, and in extreme cases (e.g., 0 dB SNR), hair noise can
severely impact signal quality. Since AR and smart glasses are in-
creasingly promoted as devices for always-on voice capture and im-
mersive communication, the presence of such user-generated noise
poses a real barrier to achieving high-quality, reliable audio. This
motivates the need for systematic datasets, detailed characterization,
and the development of robust suppression methods tailored specifi-
cally to hair noise.

3. HNM DATASET AND HAIR NOISE ANALYSIS

To enable systematic study of hair noise, we collected the first Hair
Noise Mitigation (HNM) dataset, recorded using Ray-Ban Meta
(RBM) smart glasses equipped with a five-microphone array [1].
Figure 1 illustrates the microphone placement on the RBM device.
Recordings were conducted across varied acoustic environments,
ranging from anechoic chambers to rooms with reverberation times
(RT60) up to 600 ms, ensuring coverage of both controlled and
realistic conditions.

Table 1: Hair Noise Mitigation (HNM) Dataset Summary

Category Amount Duration
Own-Voice 32 32 x 60s = 1920s
Speech External-Voice 34 34 x 60s = 2040s
Total 66 3960s
Hair-Playing 51 51 x 60s = 3060s
Noise Head-Shaking 51 51 x 60s = 3060s
Total 102 6120s

Data Collection Protocol. We adopted a layered collection pro-
tocol to isolate clean speech and hair-generated noise, facilitating
systematic analysis and usage. Participants first wore a secure wig
cap to suppress hair noise during speech recording as shown in
Fig. 3a. While wearing the glasses, they read aloud from a script,
producing clean speech samples. In a second phase, the wig cap was
removed and participants performed specified movements such as

Fig. 3: Layered data collection setup to
obtain clean speech and hair-noise (hair-
playing and head-shaking) recordings.
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Fig. 4: Effect of hair-noise on the recorded Own-Voice
and External-Voice due to the placement of micro-
phones on RBM.

shaking their heads or playing with their hair to introduce natural
hair-generated noise, resulting in two distinct types of hair noise
captured in the dataset (Figs. 3b and 3c).

In addition to the two types of hair noise, the dataset also in-
cludes two categories of voice recordings: Own-Voice (the par-
ticipant’s speech) and External-Voice (speech from another
speaker a few meters away). This design enables analysis of hair
noise effects in both near-field and far-field scenarios. In this work,
we focus specifically on speech as the signal of interest, leaving the
inclusion of other ambient sounds to future work. In total, 17 par-
ticipants (4 male, 13 female) contributed to the dataset, with record-
ings sampled at 48 kHz and 32-bit depth. Table 1 summarizes the
dataset’s overall size and distribution.

Impact of Microphone Position on Speech Quality. Hair noise
primarily affects the lower frequency spectrum (< 1 kHz), overlap-
ping with fundamental speech frequencies and degrading intelligi-
bility. Our analysis shows that microphone placement strongly in-
fluences susceptibility to hair noise. Temple microphones (channels
#2 and #3 in Fig. 1), positioned near the hairline, are most vulner-
able to brushing and tangling, leading to lower Signal-to-Noise Ra-
tio (SNR) and Perceptual Evaluation of Speech Quality (PESQ) [9]
scores. By contrast, the nose microphone (channel #1), positioned
away from the hairline, consistently yielded cleaner recordings. Fig-
ure 4 quantifies this effect, showing severe quality drops for tem-
ple microphones, particularly in the External-Voice condition
where hair noise dominates over distant speech.

Spectral and Temporal Characteristics of Hair Noise. Our anal-
ysis reveals that hair noise exhibits distinct spectral and temporal
signatures. Playing with hair produces persistent, low-frequency
noise that continuously overlaps with speech, reducing overall qual-
ity. In contrast, head-shaking generates intermittent, pulsating noise
aligned with motion dynamics. This bursty nature suggests that
suppression algorithms could exploit temporal sparsity to improve
effectiveness. Figure 5 illustrates the contrasting spectrograms of
clean, noisy, and hair-contaminated signals, highlighting the differ-
ences between persistent and intermittent hair noise patterns. These
observations confirm that hair noise is not random but exhibits struc-
tured patterns that must be considered in mitigation strategies.

In summary, as the first dataset of its kind, HNM offers valuable
insights into the characteristics of hair noise and should help direct
future work on the problem. The dataset’s size makes classical ML
approaches such as NMF and fine-tuning pretrained networks pre-
ferred mitigation strategies over training a model from scratch.

4. HAIR NOISE SUPPRESSION BENCHMARK

We benchmark hair noise suppression using a semi-supervised Non-
negative Matrix Factorization (NMF) framework [10, 11]. NMF is
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Fig. 5: Clean Own-Voice spectrogram (left). Hair noise spectro-
gram from head-shaking (middle). Dashed boxes mark hair noise
instances. Noisy Own—-Vo1ice spectrogram (right).

chosen because (i) it is a well-established method in audio source
enhancement, (ii) its interpretable structure provides insight into the
spectral-temporal signatures of hair noise, and (iii) it can be adapted
for both offline and online operation, making it relevant for AR de-
vices with real-time constraints. Our proof-of-concept implementa-
tion focuses on single-channel enhancement, exploiting the distinct
spectral and temporal patterns of hair noise.

Given a noisy speech signal z(t) = s(t) + n(t), where s(t) and
n(t) denote the time-domain clean speech and noise signals, we first
apply the Short-Time Fourier Transform (STFT) to obtain a time-
frequency representation. Let X (f, t) denote the STFT of z(t), with
magnitude spectrogram V = |X| € ]RigT, where F' is the number
of frequency bins and 7" the number of time frames.

NMF seeks to approximate V by decomposing it into two low-
rank non-negative matrices: a dictionary matrix W & RE(TK and

an activation matrix H € RX*”, where K is the number of basis
vectors. This can be expressed as V. ~ WH. Here, W captures
frequency patterns (e.g., speech vs. noise), while H encodes their
temporal activations by describing the time-varying contributions of
each frequency pattern. The optimization objective is:

$ig D(V|WH) subjectto W > 0,H > 0 (1)

Here, D(.|.) is a separable divergence such as Euclidean distance,
Kullback-Leibler (KL) divergence, or Itakura-Saito (IS) divergence.
W and H are estimated with multiplicative updates [41.

In our semi-supervised setting, W is partitioned into speech

(W, € REX*) and noise components (W,, € REX*"). By con-
T e ke xT

struction, this leads to a division of H into signal (Hs € RI™7)
and noise (H,, € ]R’;"OXT) temporal activation matrices, where K =
ks + kn. V = WH can then be re-organized as:
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In the training phase, only hair-noise recordings are used to learn
W, [14]. At inference, W,, is fixed while W, H, and H,, are
estimated, forcing the model to represent hair noise using previously
learned bases. This constraint improves separation by embedding
prior knowledge of hair noise.

The enhanced speech S is obtained via mask-based filtering:

W.H,
WH

S= oX 3
where division and ©® denote element-wise operations. Finally, the
inverse STFT reconstructs the time-domain enhanced signal.

For online operation, we adapt the sliding-window approach [10],
where NMF decomposition is computed using a limited history of
recent frames. This adaptation enables low-latency enhancement,
making the method applicable to wearable AR devices. Sec. 5.1
details the hyperparameters, including window length and delay.

ISee [12, 13] for further details.

Table 2: Performance of Online and Offline NMF on Own-Voice
and External-Voice with different cost functions. Best values
are denoted in bold.

SI-SDR (dB) 1 SI-SIR (dB) 1

Signal Method

Offline  Online Offline  Online
Noisy 10.62 11.04
Spectral Subtraction 646 - 9.57
Own-Voice NMF Itakura-Saito 11.16  11.10 1949 17.44
NMF Kullback-Leibler 1148 11.29 24.08 18.78
Noisy 251 3.03
Spectral Subtraction -0.75 - 091 -
Ext-Voice NMF Itakura-Saito 243 199 11.12 7.07
NMF Kullback-Leibler 317 3.01 12.89  6.02

5. EVALUATION

Experimental Setup. We evaluate our semi-supervised NMF-based
hair noise suppression method using both offline and online imple-
mentations across two divergence measures: Kullback—Leibler (KL)
and Itakura—Saito (IS). These cost functions are widely used in au-
dio: KL emphasizes larger values, while IS is scale-invariant [15].

Throughout this study, microphone #3 is used as the pri-
mary channel for both voice and noise signals. For all experi-
ments, a 1024-point DFT is applied to compute the STFT. We
set the number of speech and noise components to ks = 20 and
kn = 5, respectively (see Sec. 5.5 for ablation justification). For the
External-Voice condition, the external speaker is treated as the
target signal, while the wearer engages in hair-related activities such
as shaking or playing with hair.

Performance is measured using Scale-Invariant Signal-to-
Distortion Ratio (SI-SDR) and Scale-Invariant Signal-to-Interference
Ratio (SI-SIR) [16]. SI-SDR captures all distortions, including both
interference and algorithmic artifacts, while SI-SIR isolates the im-
pact of the interfering source, i.e., the hair-noise, excluding artifacts
introduced by the separation process.

For evaluation, hair noise samples from each participant are split
80720 into training and test sets. The training subset is used to learn
‘W,,, and noisy test mixtures are generated by mixing held-out noise
with corresponding clean speech recordings.

5.1. Quantitative Results

This section presents the quantitative results for both the offline and
online benchmark hair noise suppression algorithms.

Offline NMF Results. Table 2 reports SI-SDR and SI-SIR for of-
fline NMF, comparing noisy and enhanced signals under both cost
functions. KL divergence consistently provides the best performance
across both conditions and metrics. IS divergence improves over
noisy baselines in the Own-Voice scenario but falls short in SI-
SDR for External-Voice. Overall, NMF effectively suppresses
hair noise (as reflected in SI-SIR improvements) but may introduce
artifacts that reduce overall quality. Analysis by noisy input SI-
SDR reveals an interesting trend: NMF provides larger gains for
low-SNR scenarios (< 5 dB) than for high-SNR cases, as shown in
Fig. 6. In comparison, spectral subtraction performs poorly due to
non-stationary nature of hair noise.

Online NMF Results. We adapt NMF to an online mode using a
sliding-window which contains recent and past signal spectra. The
window length is determined by the hyperparameter de lay, which
specifies how many past frames are retained. At each new frame,
the window shifts by one frame. We set delay = 8, correspond-
ing to 8 past frames (32 ms each), and reduce iterations to 16 for
computational efficiency (see Sec. 5.5 for detailed ablation study).
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Performance trends mirror those of the offline case: KL remains
the best divergence measure. As expected, online NMF performs
slightly worse than offline due to shorter context. However, the gap
is small, for example, SI-SDR in the (KL, Own-Voice) condition
decreases by only 0.19 dB. This suggests online NMF is feasible for
device-constrained scenarios with near-offline performance.

5.2. Subjective Evaluation

We conducted a listening test where 11 participants rated 10 ran-
domly selected noisy and enhanced signals on a 1 — 5 annoyance
scale. Fig. 7 shows the distribution of rating improvements across
SNR ranges. Enhanced samples consistently received higher ratings,
with most scores ranging from “neutral” to “imperceptible” (3 — 5).
In contrast, noisy samples were rated “annoying” or “neutral” (2—3).
Improvements were particularly pronounced in low-SNR conditions
(£ 5 dB), confirming that NMF enhancement improves perceived
listening comfort.

5.3. Generalization to Unseen Users

We tested offline NMF with KL divergence using leave-one-out
cross-validation across participants. As shown in Fig. 8, the method
generalizes well: performance for unseen users is consistent with
Table 2. Low standard deviations in both SI-SDR and SI-SIR
demonstrate robustness across participants for both Own-Voice
and External-Voice conditions.

5.4. Computational Complexity

The offline NMF model contains ~15K parameters, requires 58 KB
memory, and has complexity O(F xT x K x N), corresponding to ~
241 MMAC/s at N = 200 iterations. Online NMF contains ~13K
parameters, requires 50 KB memory, and has complexity O(F x
T x K x N x T3), corresponding to ~ 59 MMAC/s with N = 16,
T1 = 9 frames per window, and 7% = 32 windows.

5.5. Ablation Studies

We evaluate the impact of key parameters on the performance of
offline and online NMF methods, aiming to optimize SI-SDR while
balancing the algorithm’s computational complexity.

Effect of k; in Offline NMF. Varying ks from 5 to 75 revealed
optimal SI-SDR at k; = 20 (Fig. 9a); beyond this, improvements
saturated. With ks = 20, varying k,, from 2 to 30 yielded the best
performance at k,, = 5 (Fig. 9b), with no further gains for larger
values.

Effect of Frame Size in Online NMF:. Frame sizes between 16
ms and 256 ms showed optimal performance at 32 ms (Fig.9c);
smaller frames lacked context while larger frames oversmoothed.
With frame size fixed at 32 ms, varying delay from 2 to 10 revealed
best performance at 8 frames (Fig.9d). Shorter delays reduced tem-
poral modeling, while longer delays added latency without benefit.

6. CONCLUSION

This paper introduces hair noise as a previously overlooked source
of audio degradation in smart glasses. We began with a controlled
user study that established its perceptual impact, showing that hair
noise becomes disruptive below ~ 5 dB SNR. To support system-
atic research, we released HNM, the first multi-channel dataset cap-
turing hair noise across varied real-world conditions, and analyzed
its spectral, temporal, and spatial properties, including sensitivity to
microphone placement. Building on these insights, we developed a
semi-supervised NMF-based suppression method in both offline and
online modes, demonstrating measurable improvements in objective
metrics and subjective ratings. Together, these contributions estab-
lish hair noise as a valid challenge for wearable audio systems and
provide a foundation for future development of tailored enhancement
techniques.
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