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Abstract
Spoken Language Understanding (SLU) systems must bal-

ance performance and efficiency, particularly in resource-
constrained environments. Existing methods apply distillation
and quantization separately, leading to suboptimal compres-
sion as distillation ignores quantization constraints. We pro-
pose QUADS, a unified framework that optimizes both through
multi-stage training with a pre-tuned model, enhancing adapt-
ability to low-bit regimes while maintaining accuracy. QUADS
achieves 71.13% accuracy on SLURP and 99.20% on FSC,
with only minor degradations of up to 5.56% compared to
state-of-the-art models. Additionally, it reduces computational
complexity by 60–73× (GMACs) and model size by 83–700×,
demonstrating strong robustness under extreme quantization.
These results establish QUADS as a highly efficient solution
for real-world, resource-constrained SLU applications.
Index Terms: Quantization, knowledge distillation, multi-stage
training, speech-language understanding.

1. Introduction
Spoken Language Understanding (SLU), a critical component
of Natural Language Understanding, aims to extract semantic
information from user utterances [1] and intent detection is one
of the key subtasks of SLU, involving classifying the overall
purpose of an utterance. As Augmented Reality (AR), Virtual
Reality (VR), and voice-assisted technologies continue to pro-
liferate, SLU has become a cornerstone of conversational AI,
enabling systems to interpret and derive meaning from user in-
put [2, 3, 4, 5]. With the growing ubiquity of these technologies
in everyday life—from virtual assistants like Alexa and Siri to
immersive AR applications—the demand for SLU systems that
are not only accurate but also responsive, secure, and efficient
has never been greater.

Conventional SLU systems typically follow a two-stage
process: first, an Automated Speech Recognition (ASR) module
converts spoken audio into text; then, an SLU module analyzes
the transcribed text to detect the user’s intent [6, 7, 8]. Recent
works integrate large language models (LLMs) with ASR for
intent classification, yielding promising results [2, 9, 10, 11].
However, these architectures are vulnerable to error propaga-
tion, where transcription inaccuracies from the ASR module ad-
versely impact intent classification performance [12, 3, 13, 14,
7]. To address this limitation, researchers have explored end-to-
end models that directly classify intent from speech, bypassing
the intermediate transcription step [13, 3, 5, 15, 16, 17]. These
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models achieve high accuracy and are particularly suitable for
AR, VR, and voice-assisted devices.

However, the substantial size of these end-to-end mod-
els—typically ranging from 75.53 to 2422 MB—poses signif-
icant challenges for on-device deployment. As a result, these
models are often processed in the cloud, introducing practical
issues such as increased latency, elevated energy consumption,
and privacy risks. For instance, in AR and VR environments,
where immediate feedback is crucial for user immersion, la-
tency can disrupt the experience [18, 19]. Similarly, in voice-
assisted devices handling sensitive information, cloud process-
ing raises privacy concerns [20]. Frequent data transmission
between devices and the cloud also leads to higher energy con-
sumption, impacting battery life in portable devices [21, 22].

These limitations highlight the pressing need for
lightweight, efficient SLU models capable of on-device
processing. While model compression techniques like knowl-
edge distillation [23], quantization [24], and pruning [25] have
been widely adopted to reduce model size, they often fall short
in preserving performance due to their sequential application.
Traditional methods typically pre-train models using distilla-
tion and then apply quantization, leading to compounded errors
and suboptimal compression [26, 27]. Disjoint distillation and
quantization stages introduce error propagation, where infor-
mation loss during distillation compounds during quantization,
degrading overall performance. Furthermore, this approach
struggles with low-bit quantization, as distilled models are not
inherently adapted to extreme precision constraints, resulting
in significant quantization errors.

To overcome these challenges, this paper introduces
QUADS, a unified QUAntized Distillation framework explic-
itly designed for Spoken Language Understanding (SLU) tasks.
By seamlessly integrating distillation and quantization into a co-
hesive process, QUADS addresses the limitations of traditional
methods and enables efficient, high-performance SLU deploy-
ment on resource-constrained devices.

Our contributions tackle three critical challenges in devel-
oping efficient SLU models for on-device deployment:
1. Unified Distillation and Quantization for Efficient Com-
pression: Balancing model compression with performance re-
tention is a significant challenge, as reducing model size of-
ten leads to degraded accuracy. QUADS mitigates this issue
by integrating distillation and quantization into a unified pro-
cess, preventing the error propagation that occurs when these
steps are treated separately. This cohesive framework preserves
model performance even under extreme compression, enabling
robust SLU in compact models.
2. Adaptability to Low-Bit Quantization: Adapting models
to low-bit quantization without compromising intent detection
accuracy is another key challenge. QUADS employs a multi-
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Figure 1: Schematic overview of QUADS. A two-phase framework for efficient model
training. In the distillation phase, the student model Φ learns from the teacher model Ω
via a combined loss strategy. The quantization phase compresses the student model’s
weightsWΦ using the codebook, where weights are grouped into clusters and refined
using objectives that balance centroid alignment and cross-network consistency.
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Figure 2: Training stages of QUADS. The
distillation phase transfers knowledge to the
student, and in the quantization phase, the dis-
tilled student undergoes quantized weight up-
dates.

stage combined training strategy that concurrently optimizes the
model for both distillation and quantization. This joint opti-
mization enhances the model’s adaptability to extreme precision
reductions, ensuring high performance even in low-bit regimes.
3. Robust Generalization in Diverse Acoustic Environ-
ments: Compressed models often struggle to generalize well
across diverse and noisy acoustic environments due to re-
duced capacity. To address this, QUADS leverages pre-
trained acoustic-linguistic representations, enhancing robust-
ness and maintaining high accuracy despite aggressive com-
pression. This ensures consistent performance across varied
real-world SLU scenarios.

2. QUADS: Quantized Distillation
To achieve maximum accuracy with minimum computational
complexity for a given speech signal x(t) for intent classifi-
cation, we adopt an Expectation Maximization (EM)[28] ap-
proach by integrating model distillation and quantization into
a cohesive framework.(Fig.1). Our proposed quantized distil-
lation (QD) framework leverages an iterative multi-stage com-
bined training procedure (MCT) (Fig. 2) to achieve this bal-
ance. The following section details critical phases of this pro-
cess along with the MCT pipeline.

2.1. Distillation Phase

The QD process begins with extracting the mel-spectrogram
X(t, f) = f(x(t)) from the speech signal x(t), where f(⋅)
represents the mel-spectrogram extraction function. This spec-
trogram serves as input for both the highly capable, computa-
tionally expensive teacher model Ω and the lightweight student
network Φ.

The feature representations from the teacher and student
networks are denoted as zΩ = fΩ(X(t, f)) ∈ Rn and zΦ =
fΦ(X(t, f)) ∈ Rn, where fΩ(⋅) and fΦ(⋅) are the respective
feature encoders, and n is the latent space size for both net-
works. To align the student network’s feature space zΦ with the
teacher’s zΩ, we compute the l1 loss:

L1 = ∑(zΩi , zΦi)∣∣zΩi − zΦi ∣∣1 (1)

A classification head is appended to the student network’s
encoder fΦ(⋅) to perform intent classification. The cross-
entropy loss between the student network’s predictions and the

ground truth labels is defined as:

LGT = ∑
i

LCE(ci, σ(zΦi)) (2)

Here, σ(⋅) represents the softmax function, and ci denotes
the ground truth labels. The combined distillation loss Ldis

balances feature alignment and classification accuracy:

Ldis = αL1 + (1 − α)LGT (3)

2.2. Quantization Phase.

Following distillation, the student model’s weights WΦ are
quantized using a k-means clustering-based method to further
reduce computational complexity. For a given bit length b,
k = 2b centroids are initialized randomly, and the weightsWΦ

are partitioned into k clusters by minimizing the within-cluster
sum of squares: argmin

C
∑

k
i=1∑w∈ci

∣w − ci∣
2

During back-propagation, the gradient of each weight is
calculated to update the centroids [29]. The centroid update
loss Lcentroid is defined using the indicator function 1(⋅):

∂Lcentroid

∂Ck
= ∑

i,j

∂Lcentroid

∂WΦi,j

1(Ii,j = k) (4)

The total quantization loss Lquant is defined as:

Lquant = Lcentroid + LGT (5)

To effectively integrate both distillation and quantization,
we employ a multi-stage training strategy described below.

2.3. Multi-stage Combined Training

To transfer knowledge effectively while maintaining a compact
model, we employ a Multi-Stage Combined Training (MCT)
strategy, grounded in the principles of Expectation Maximiza-
tion (EM). MCT alternates between distillation and quantiza-
tion phases, treating distillation as the expectation step, where
the student model learns from the teacher, and quantization as
the maximization step, where model parameters are optimized
for efficiency. This iterative process progressively refines the
student model, as illustrated in Figure 2. The total loss L is
computed by combining the distillation and quantization losses:



Table 1: Comparison of QUADS and Prior Methods on the SLURP and FSC Datasets. We report accuracy and F1-score for model
performance, alongside GMACs and model size, to evaluate efficiency.

SLURP FSC
Baseline Bit

Length #Param
(M) ↓

Model
Size (MB) ↓ GMACs ↓ Accuracy ↑ F1-Score ↑ #Param

(M) ↓
Model

Size (MB) ↓ GMACs ↓ Accuracy ↑ F1-Score ↑

CTLpt 32 127 484.47 143.2 90.14 82.27 - - - - -
CTL 32 127 484.47 143.2 72.56 43.34 - - - - -
Whisper (large) 32 634.94 2422.10 1136.58 75.32 71.11 634.90 2421.97 1136.58 99.49 99.44
Whisper (small) 32 87.05 332.1 172.14 72.16 69.73 87.03 331.97 172.13 99.39 99.31
Whisper (base) 32 19.85 75.73 43.71 71.7 65.48 19.84 75.68 43.70 99.44 99.4
Prosody 32 21.04 80.27 43.82 68.23 62.55 21.04 80.27 44.12 97.80 98.10
Prosody + Distillation 32 21.47 81.92 44.09 76.26 71.92 21.47 81.92 44.31 99.10 98.30

32 7.25 27.66 15.6 71.13 65.07 7.64 29.16 18.48 99.20 99.10
16 7.25 13.83 15.6 70.48 65.21 7.64 14.58 18.48 98.78 98.21
8 7.25 6.91 15.6 69.73 64.87 7.64 7.29 18.48 98.20 97.87QUADS

4 7.25 3.46 15.6 68.98 64.39 7.64 3.65 18.48 97.39 96.12

L = γLdis + (1 − γ)Lquant (6)

Here, γ ∈ {0,1} controls the training phase, with γ = 1
during distillation and γ = 0 during quantization.

After multiple cycles of distillation and quantization, a fi-
nal quantization phase is applied. This ensures the model is op-
timally compressed while maintaining high performance. Un-
like intermediate quantization steps, the final phase focuses ex-
clusively on minimizing the model footprint for deployment
in resource-constrained environments, solidifying the student
model’s ability to operate without significant loss in accuracy.

3. Experiments
3.1. Dataset

Following the evaluation of the latest works on intent classifica-
tion [3, 2, 17], we conduct experiments on two prominent SLU
datasets, SLURP and FSC, to ensure comprehensive evaluation
across diverse domains and command-specific tasks.
SLURP. [30] The dataset comprises 72K 16kHz spoken-
language-understanding recordings across 18 distinct domains,
split into 49.9K (39.7 h) train, 8.5K (6.8 h) validation, and
12.9K (10.1 h) test utterances.
FSC.[31]The dataset consists of 30,000 16kHz single-channel
audio recordings of English commands from 97 distinct users
designed for smart home and virtual assistant applications.

3.2. State-of-the-Art (SOTA) Baseline Models

We compare QUADS against several SOTA models equipped
with either SLU or distillation frameworks [32, 33, 3] while
varying model sizes to understand its scalability and efficiency.
Conformer-Transformer-Large (CTL) [32] employs a trans-
former architecture, leveraging convolutional modules to cap-
ture local temporal features and transformer modules to model
global dependencies in the audio signal.
Whisper [33] uses convolutional blocks to extract features from
the log–mel spectrograms and then passes the feature through
a transformer architecture to generate text in an autoregressive
manner. We evaluate against the small, base, and large variants.
Prosody [3] leverages prosodic features to generate an attention
map for audio over time. We compare against both prosody-only
and a distillation enhanced (prosody + distillation).

3.3. Evaluation Metrics

To evaluate model performance, we report both accuracy and
F1-score on the test sets. For model efficiency and computa-
tional complexity, we report the number of parameters, model

size (in megabytes, MB), and the number of multiplication and
accumulation operations (GMACs) during inference.

3.4. Implementation Details

We use Whisper large as our teacher model Ω. Since the Whis-
per model accepts mel spectrograms as inputs, we compute an
80-channel log mel spectrogram for all speech samples using
25-millisecond windows with a 10-millisecond stride. Our stu-
dent model Φ follows a structure similar to that of the teacher.
Further implementation details can be found in the open-source
codebase 1. Our student model’s encoder is initialized with
Whisper pre-trained weights. We add a classifier head after the
encoder of Φ for intent classification.

To train the student model, we use learning rates of 1×10−6

for the encoder and 1 × 10−3 for the classifier. Our iterative
multi-stage training alternates between distillation and quanti-
zation for five iterations, with each phase running for epochs.

4. Results
4.1. Comparison with Baseline Algorithms

Table 1 presents a comprehensive comparison between
QUADS and SOTA models on the SLURP and FSC datasets.
QUADS consistently demonstrates superior efficiency and
scalability, making it an ideal candidate for real-world, on-
device applications without compromising performance.
SLURP Dataset. On SLURP, QUADS achieves an F1-score
of 64.39–65.21% and accuracy of 68.98–71.13%, while drasti-
cally reducing computational overhead. With a minimal model
footprint ranging from 3.46 MB to 27.66 MB and requiring
only 15.60 GMACs, QUADS achieves results that are highly
competitive with larger, more resource-intensive models.

In contrast, SOTA baselines show marginally higher F1-
scores of 65.48–71.92% (an average of just 3.9% improve-
ment), but at a significant cost: they demand up to 3× more
computational resources (GMACs of 43.72–44.09) and mod-
els that are 2.9–23× larger (75.73 MB to 81.92 MB). This
highlights QUADS ’s unparalleled efficiency, delivering nearly
equivalent performance with a fraction of the resource de-
mands. Notably, our 4-bit quantized model occupies only 3.46
MB and contains just 7.25 million parameters while maintain-
ing robust performance, with at most 7.53% drop compared
to the Whisper-distilled prosody model. This level of com-
pression, paired with minimal performance degradation, un-
derscores QUADS ’s potential for deployment in resource-
constrained environments.

1https://github.com/BASHLab/QUADS
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Figure 3: QUADS effectively shrinks model size to 3.46–29.16 MB, signifi-
cantly reducing power consumption—by up to 700× for SLURP and 663× for
FSC—while preserving competitive F1-scores, with a maximum drop of 5.56%.
In the visualization, bubble diameter represents model size (MB), and the center
of each bubble (★) marks the F1-score at a given power consumption.

Table 2: Ablation on model initialization and differ-
ent training strategy. We study the effect of model ini-
tialization and training methods on QUADS.

SLURP FSC
Initia-

lization
Bit

Length
Training
Strategy Model

Size (MB) ↓
F1-

Score ↑
Model

Size (MB) ↓
F1-

Score ↑

Distillation 78.31 26.59 137.39 88.93

Random 16
Quantization

after
Distillation

48.13 12.91 72.31 85.63

MCT 13.83 39.78 37.83 90.19

4 MCT 3.46 29.61 9.4597 89.71

Distillation 78.31 60.93 137.39 98.71

Quantization
after

Distillation
48.13 53.79 72.31 96.2316

MCT 13.83 65.21 37.83 98.21

Pre-
trained

4 MCT 3.46 64.39 9.4597 96.12

Moreover, while all versions of QUADS maintain consis-
tent GMACs across different bit lengths, the lower bit repre-
sentations offer significant energy savings [34]. Figure 3a il-
lustrates the energy efficiency versus F1-score trade-offs, with
bubble sizes representing model sizes in megabytes. Impres-
sively, QUADS consumes 83.29× less energy at the 8-bit level
compared to Whisper (base), with only a negligible 3.07% drop
in F1-score. Such a dramatic reduction in energy consumption
solidifies QUADS ’s position as a highly efficient alternative to
conventional SLU models.
FSC Dataset. On the FSC dataset, QUADS achieves
near-perfect F1-scores of 99.10–96.12% and accuracies of
99.20–97.39%, closely matching or even surpassing sev-
eral SOTA baselines while maintaining a significantly smaller
model size and lower computational requirements. Com-
pared to the most competitive SOTA models, QUADS requires
83–663× less memory and 61.50× fewer GMACs. Despite
these drastic reductions in resource usage, QUADS retains ex-
ceptional accuracy, demonstrating that its compact design does
not come at the expense of performance.

Figure 3b further illustrates the outstanding trade-off be-
tween performance and energy consumption. At the 8-bit rep-
resentation, QUADS consumes 3637× less energy than Whis-
per (base) and 141× less energy than Prosody + Distillation,
with only a marginal F1-score drop of 0.23% and 1.14%, re-
spectively. This remarkable efficiency, coupled with negligible
performance degradation, underscores QUADS’s suitability for
scalable, energy-efficient SLU applications.

4.2. Ablation Study

We conduct an ablation study to examine the influence of model
initialization (Random vs. Pre-trained) and training strategies
(Distillation, Quantization after Distillation, and MCT) on the
performance and efficiency of QUADS. The key findings are
presented in Table 2.
Effect of Initialization. Pre-trained initialization consistently
outperforms random initialization across all training strategies,
underscoring the critical role of leveraging prior knowledge
for downstream tasks. On the SLURP dataset, distillation
with pre-trained initialization achieves an F1-score of 60.93, in
stark contrast to 26.59 with random initialization—a remark-
able 34.34-point improvement. This trend is even more pro-
nounced on FSC, where all pre-trained models yield F1-scores
exceeding 96.12, demonstrating superior generalization and ro-

bustness. These results highlight that pre-training substantially
accelerates convergence and enhances performance, especially
for complex, real-world datasets.
Training Strategies. Our results highlight that traditional dis-
tillation achieves strong performance (e.g., 98.71 F1 on FSC)
but comes with significant computational overhead, resulting
in large model sizes (e.g., 137.39 MB). While post-distillation
quantization effectively reduces model size (e.g., SLURP: 48.13
MB vs. 78.31 MB), it severely compromises performance, lead-
ing to F1-scores as low as 12.91. In contrast, our MCT ap-
proach harmonizes efficiency and accuracy, delivering the best
of both worlds. At 4-bit precision, QUADS compresses mod-
els to just 3.46 MB (SLURP) and 9.46 MB (FSC) while main-
taining competitive F1-scores of 64.39 and 96.12, respectively.
This demonstrates that MCT not only mitigates the degradation
typically introduced by quantization but also preserves the rich
feature representations from the distillation phase, solidifying
its superiority in balancing model size and performance.
Bit Length and Dataset Sensitivity. Reducing bit length from
16 to 4 under MCT significantly compresses models without
substantial losses in performance. For instance, on SLURP,
model size drops from 13.83 MB to 3.46 MB, while F1-
score remains stable at 64.39%. On FSC, this trend is even
more pronounced: pre-trained MCT models at 16-bit precision
achieve an outstanding 98.21% F1-score, with minimal decline
as bit precision decreases. However, dataset sensitivity varies.
The FSC dataset demonstrates remarkable robustness across all
configurations, consistently maintaining high F1-scores above
96.12. Conversely, SLURP exhibits greater sensitivity to ex-
treme quantization, particularly under 4-bit constraints, sug-
gesting that datasets with more semantic variability may require
more careful tuning to maintain peak performance.

5. Conclusion
This study presents a unified distillation and quantization
framework that achieves high performance in intent classifica-
tion with minimal computational overhead. Our model attains
F1-scores of 64.39–65.07% on SLURP and 96.12–99.10% on
FSC, with model sizes as small as 3.46 MB. Compared to state-
of-the-art models, QUADS delivers similar accuracy with only
a 2–3% drop while significantly reducing memory and energy
consumption. These results demonstrate the model’s efficiency
and suitability for deployment on resource-constrained devices
in real-world SLU applications.
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