
RAVEN: Query-Guided Representation Alignment for Question
Answering over Audio, Video, Embedded Sensors, and Natural Language

Subrata Biswas*, Mohammad Nur Hossain Khan*, Bashima Islam
Department of Electrical & Computer Engineering

Worcester Polytechnic Institute
Worcester, MA 01609

{sbiswas, mkhan, bislam}@wpi.edu

Abstract

Multimodal question answering (QA) often re-
quires identifying which video, audio, or sensor
tokens are relevant to the question. Yet modal-
ity disagreements are common: off-camera
speech, background noise, or motion outside
the field of view often mislead fusion models
that weight all streams equally. We present
RAVEN, a unified QA architecture whose core
is QuART, a query-conditioned cross-modal
gating module that assigns scalar relevance
scores to each token across modalities, enabling
the model to amplify informative signals and
suppress distractors before fusion. RAVEN is
trained through a three-stage pipeline compris-
ing unimodal pretraining, query-aligned fusion,
and disagreement-oriented fine-tuning – each
stage targeting a distinct challenge in multi-
modal reasoning: representation quality, cross-
modal relevance, and robustness to modality
mismatch. To support training and evaluation,
we release AVS-QA, a dataset of 300K synchro-
nized Audio–Video-Sensor streams paired with
automatically generated question-answer pairs.
Experimental results on seven multi-modal QA
benchmarks – including egocentric and exo-
centric tasks – show that RAVEN achieves
up to 14.5% and 8.0% gains in accuracy com-
pared to state-of-the-art multi-modal large lan-
guage models, respectively. Incorporating sen-
sor data provides an additional 16.4% boost,
and the model remains robust under modality
corruption, outperforming SOTA baselines by
50.23%. Our code and dataset are available at
https://github.com/BASHLab/RAVEN.

1 Introduction

Answering natural language questions in multi-
modal settings often requires reasoning over visual,
auditory, and sensor inputs to extract the most rel-
evant evidence (Wanniarachchi and Misra, 2025).
Yet real-world signals are rarely clean or aligned:

* These authors contributed equally.

off-camera speech, background noise, and unob-
served motion can introduce conflicts across modal-
ities. Without identifying which inputs are relevant
to the question, fusion models may attend to irrele-
vant signals and overlook critical evidence.

We introduce RAVEN, a unified architecture for
question answering over video, audio, and sensor
inputs. It resolves cross-modal conflicts by rea-
soning about modality relevance. At its core is
QuART, a query-conditioned cross-modal gating
module that assigns scalar relevance scores to each
token. These scores suppress distractors and am-
plify informative signals before fusion, enabling
the model to produce context-sensitive representa-
tions grounded in the question.

This challenge intensifies with sensor data inte-
gration. Unlike visual and auditory streams, sensor
inputs capture latent physical dynamics, such as
acceleration, orientation, and velocity, but often
arrive asynchronously, are noisy, and lack semantic
anchors. Their relevance also varies by question.
For instance, when asked “Did the user place the
object gently?”, only audio (e.g., impact sound)
and motion traces (e.g., deceleration) are informa-
tive, while visual frames may mislead. QuART’s
query-conditioned filtering allows the model to fo-
cus on such signals while ignoring irrelevant tokens.
Figure 1 illustrates this behavior and highlights the
resulting performance gains.

Recent advances in multimodal large lan-
guage models (MLLMs) have enabled perception-
language reasoning by combining pretrained LLMs
with modality-specific encoders and fusion strate-
gies (Liu et al., 2023a; Lin et al., 2023a; Chu et al.,
2023). Models such as Flamingo (Awadalla et al.,
2023), Video-LLaMA (Zhang et al., 2023a), and
AVicuna (Tang et al., 2024) have achieved strong
results on video captioning, video QA, and audio-
language tasks (Li et al., 2023a; Yu et al., 2023;
Liu et al., 2024b). However, these systems typi-
cally focus on vision and audio, ignoring embedded
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Describe the scene for me.
Someone is working in a kitchen  as stove, oven, chopping board, knife can 
be seen. Also, can hear water dropping, probably from a  sink, not visible 
in the frames.

What is the person likely doing in the scene?

The person is preparing food as a frying  pan is visible.

What activity is done by the person with the object in their hand?

The person is putting the chopping board in their hand on top of the table. 
Deceleration seen on accelerometer Y-axis and the sound of dropping an 
object can be heard.

Figure 1: RAVEN jointly interprets video, audio, and sensor signals (e.g., inertial measurement unit or IMU)
to answer fine-grained, context-aware questions. It outperforms existing MLLMs across six QA benchmarks,
demonstrating robust generalization through multi-modal alignment.

sensor modalities that are critical in domains like
AR/VR, robotics, and mobile health. Moreover,
they often assume clean, synchronized inputs and
rely on projection, cross-attention (Ye et al., 2024;
Wu et al., 2024), or contrastive alignment (Radford
et al., 2021; Elizalde et al., 2023) —approaches
that break down under modality misalignment. In
contrast, RAVEN uses query-conditioned token-
level filtering via QuART to dynamically attend
to the most informative modality stream at each
timestep.

We train RAVEN using a three-stage pipeline:
(1) unimodal pretraining to improve encoder spe-
cialization, (2) query-aligned fusion to teach rel-
evance modeling, and (3) disagreement-oriented
fine-tuning to increase robustness under modality
mismatch. Each stage addresses a distinct chal-
lenge in multimodal reasoning, yielding an aver-
age 26.87% improvement over training without
disagreement-oriented fine-tuning.

To support training and evaluation, we release
AVS-QA, a dataset of 300K automatically gener-
ated {Audio, Video, Sensor, QA} quadruples
from egocentric scenarios. To our knowledge, it is
the first large-scale QA benchmark with synchro-
nized input streams and question–answer supervi-
sion across all three modalities (See Table 1).

RAVEN, powered by QuART, achieves state-
of-the-art performance on seven QA benchmarks,
with gains of up to 14.5% over VideoLLaVA (Lin
et al., 2023a) and 8.0% over AVicuna (Tang et al.,
2024) on egocentric and exocentric tasks, respec-
tively. Incorporating sensor data yields an addi-

tional 16.4% boost, and under modality corrup-
tion, RAVEN retains a 50.23% improvement over
prior systems-demonstrating robust, query-aware
reasoning across diverse multimodal inputs. We
summarize our contributions below:

Table 1: Comparison of egocentric QA benchmarks.
AVS-QA is the only dataset with all three modalities,
four QA types, and large-scale automated supervision.

Benchmark A V S Data
Source

Answer
Type Evaluator Size

EgoTaskQA ✓ ✓ ✗
Crowd-
sourcing

OE
Crowd-
sourcing

40K

EgoVQA ✓ ✓ ✗ Handcraft MC Accuracy 520

EgoThink ✓ ✓ ✗ Handcraft OE LLMs 700

VidEgoThink ✓ ✓ ✗
Egocentric

video
OE LLMs 1.2K

MM-Ego ✓ ✓ ✗
Multimodal

(AV)
OE / MC

Accuracy,
LLMs /CE

10K

AVS-QA ✓ ✓ ✓
Egocentric

video
MC / OE
TF /CE

LLMs 300K

•We propose RAVEN, a unified QA model that
integrates video, audio, and sensor inputs using
QuART, a query-conditioned gating module to
filter distractors before fusion
• Introduction of query-aligned fusion and
disagreement-oriented fine-tuning after unimodal
pre-training enhances representation, relevance,
and robustness to cross-modal disagreement.
•We release AVS-QA, a 300K-sample dataset with
synchronized audio, video, sensor streams, and
auto-generated QA pairs.
• We achieve state-of-the-art results on seven
benchmarks, with strong performance across ego-
centric, exocentric, and corrupted-input settings.



Q1: What is ...
a1. ....
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Figure 2: Overview of the AVS-QA dataset pipeline. Given synchronized audio–video–sensor input, the Actor
generates metadata and QA pairs, the Evaluator filters weakly grounded examples, and the Critic ranks quality
across five axes. The process is fully automated and yields 300K high-quality QA examples across four types.

2 Related Work

Large and Multi-modal Language Mod-
els. Large language models (LLMs) such as
LLaMA (Touvron et al., 2023) and GPT-4 (Achiam
et al., 2023) have demonstrated strong reasoning
abilities. Multi-modal language models (MLLMs)
extend LLMs with modality-specific encoders and
fusion modules for visual or auditory inputs (Li
et al., 2023b; Liu et al., 2023a; Bai et al., 2023; Luo
et al., 2023; Chu et al., 2024; Kong et al., 2024).
Representative models such as Flamingo (Alayrac
et al., 2022), LLaVA (Liu et al., 2023a), and
Video-LLaMA (Zhang et al., 2023a) achieve
impressive results on vision-language and audio-
video QA through instruction tuning. However,
these systems typically ignore embedded sensor
modalities and assume synchronized, clean inputs.
Sensor-aware models–such as LLMSense (Ouyang
and Srivastava, 2024), IMUGPT (Leng et al.,
2024), and OpenSQA/LLASA (Imran et al.,
2024)–process inertial signals in isolation, without
visual or auditory grounding. ImageBind (Girdhar
et al., 2023) supports multiple modalities but lacks
QA supervision or cross-modal reasoning. In
contrast, our framework performs query-guided
alignment across video, audio, and sensor inputs
with direct QA grounding. See Appendix A for
full citations.

Multi-modal Feature Alignment. Token-level
fusion across modalities is central to MLLM per-
formance. Dual encoders like CLIP (Radford
et al., 2021) and fusion-based models such as
LLaVA (Liu et al., 2023a) and Q-Former (Li et al.,
2023b) align vision and language. Extensions
like Hierarchical Q-Former (Azad et al., 2025),
Smaug (Lin et al., 2023b), and MACAW (Lyu et al.,
2023) adapt this to temporal signals but are opti-
mized for audio-visual tasks. These approaches

struggle under sensor-specific noise, asynchrony,
or modality mismatch. Our proposed QuART as-
signs query-conditioned scalar weights to cross-
modal tokens, enabling selective fusion and robust
reasoning under disagreement.
Multi-modal Datasets. Existing corpora sup-
port audio-visual (e.g., HowTo100M (Chen et al.,
2024b), AudioCaps (Kim et al., 2019)) and image-
language learning (e.g., CC3M (Changpinyo et al.,
2021)). QA-focused datasets such as AVQA (Yang
et al., 2022), MusicAVQA (Li et al., 2022), and
MSRVTT-QA (Xu et al., 2016) do not include sen-
sor data. Egocentric QA datasets like Ego4D (Grau-
man et al., 2022) and EgoTaskQA (Jia et al., 2022)
lack synchronized video-audio-sensor input. To ad-
dress this, we introduce AVS-QA, a 300K-example
dataset of audio, video, sensor, QA quadruples
with synchronized streams, four question types,
and frame-level alignment. Table 1 summarizes its
scope.

3 AVS-QA: Multi-Modal Dataset
Curation Pipeline

Despite rapid progress in multi-modal QA, no exist-
ing benchmark provides aligned supervision across
video, audio, and sensor inputs. Prior QA datasets
are either limited to vision-language pairs or omit
sensor signals entirely (see Table 1). To bridge this
gap, we introduce AVS-QA, a dataset of 300K au-
tomatically generated {video, audio, sensor,
QA} quadruples. This scale exceeds the combined
size of existing egocentric QA datasets by a factor
of four. Unlike prior work, AVS-QA includes four
question types–open-ended (OE), closed-ended
(CE), multiple-choice (MC), and true/false (TF)–
supporting both generative and retrieval-style eval-
uation.

AVS-QA is constructed via a fully automated,
three-stage Actor–Evaluator–Critic pipeline, illus-



trated in Figure 2. The pipeline takes as input a
multi-modal triplet D = (v, a, s), where v, a, and
s denote temporally aligned video, audio, and sen-
sor streams, and produces question-answer pairs
(q, A) ∈ Q. Formally, the dataset generation pro-
cess is defined as a mapping function F : D → Q,
yielding synchronized {v, a, s, q, A} tuples.
Actor: Multi-modal Prompt Generation. The
Actor constructs an enriched scene descriptionM
from each triplet D. We extract visual features us-
ing BLIP-2 (Li et al., 2023b) (frame captioning)
and YOLOv11 (Khanam and Hussain, 2024) (ob-
ject detection, and localization); audio features us-
ing Qwen2-Audio-7B (Chu et al., 2024) (transcrip-
tion and event labels); and sensor features using
a 200 Hz statistical extractor (Imran et al., 2024)
over 15-second IMU windows (e.g., mean, RMS,
skewness). These cues are concatenated into a nat-
ural language prompt, from which the Actor gen-
erates four QA types: open-ended, closed-ended,
multiple-choice, and true/false. For open-ended
questions, five candidate answers are produced for
filtering, and one final answer is retained.
Evaluator: Modality-Consistency Filtering.
Given a candidate QA pair (q, A) generated from
meta-informationM, the Evaluator verifies that the
referenced modality or modalities are supported by
the corresponding input triplet (v, a, s) ∈ D. For
instance, motion-related questions require signif-
icant activity in the sensor stream (e.g., variance
spike), while visual or auditory references must
align with detected objects or acoustic summaries.
Pairs lacking sufficient grounding are discarded. To
ensure diversity, the Evaluator enforces a balanced
mix of single- and cross-modality QA types.
Critic: Quality Ranking via LLM Scoring. For
each candidate pair, the Critic applies an ensemble
of instruction-tuned LLMs to assess QA quality.
Inspired by LLM-as-judge paradigms (Fu et al.,
2023; Zheng et al., 2023a), we define a quality vec-
tor C(q, A) = [s1, s2, s3, s4, s5] ∈ R5, where each
score corresponds to one of five axes: answerabil-
ity, hallucination robustness, modality grounding,
specificity, and semantic relevance. A QA pair is
discarded if any component score falls below a task-
specific threshold (See Appendix B). This stage
ensures that all retained examples are interpretable,
grounded, and semantically meaningful. The final
dataset contains short-form answers across four for-
mats (open-ended, closed-ended, multiple-choice,
and true/false), supporting both retrieval and gener-
ation in most formats.

Output. AVS-QA is built from egocentric clips in
Ego4D (Grauman et al., 2022) and EPIC-Kitchens-
100 (Damen et al., 2018), with each example con-
taining synchronized video, audio, sensor data, and
a verified answer. The dataset spans 300K QA pairs
across three modalities, four QA types, and dual
perspectives–offering diverse, fine-grained super-
vision for multi-modal reasoning. We randomly
selected 300 samples from the dataset and con-
ducted a human evaluation following the criteria
described in Appendix B.3. Additional statistics
and details are provided in Appendix B. For pri-
vacy and ethical considerations, see Section 9. The
AVS-QA dataset has been publicly released under
CC 4.0 license to support reproducibility.

4 RAVEN Framework: Query-Token
Alignment for Multi-Modal Fusion

RAVEN performs query-conditioned fusion of
video, audio, and sensor inputs via token-level
alignment. As shown in Figure 3, inputs from each
modalities are processed through individual pre-
trained encoders and projected to a shared space.
Our core module, QuART (Query-Aligned Repre-
sentation of Tokens), computes query-aware rele-
vance scores across all modalities, enabling robust
reasoning under noisy or misaligned inputs. We
describe each component below and architecture,
training, and implementation details available in
Appendix C and E.
Modality-Specific Feature Encoders. Given a
triplet D = {v, a, s}, each modality is encoded
and projected to RLm×E . Video frames v =
{It}Tt=1 are sampled uniformly and encoded us-
ing SigLIP-so-400m (Zhai et al., 2023), yielding
zv = Φv(v) ∈ RLv×E . Audio is transformed into
a Kaldi-fbank spectrogram (Povey et al., 2011) and
encoded via BEATs (Chen et al., 2022) to obtain
za = Φa(a) ∈ RLa×E . Sensor data–multi-axis
IMU streams–are encoded using LIMU-BERT (Xu
et al., 2021), producing zs = Φs(s) ∈ RLs×E (See
Appendix G for ablation).
Language Decoder and Query Embedding. We
use Qwen2-7B-Instruct (Yang et al., 2024) as
the decoder-only language model Π. Its tok-
enizer maps the query Q to token embeddings
zq ∈ RLq×E . Each modality encoder–Φv(v),
Φa(a), Φs(s)–is followed by a projection layer
that projects extracted feature into the shared space
RLm×E . For simplicity, Φm(·) refers to the com-
bined encoder and projection for modality m ∈
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Figure 3: Overview of RAVEN. Each modality (video, audio, sensor) is encoded using pretrained encoders and
projected into a shared space. The QuART module performs query-conditioned token relevance scoring to align
informative tokens across modalities. The figure also highlights the three-stage training pipeline for alignment-aware
multi-modal reasoning. Here, and represent trainable and frozen components, respectively.

{v, a, s} (See Appendix C.3).

QuART: Query-Aligned Representation of To-
kens. The QuART module performs query-
conditioned token selection over multi-modal in-
puts. Given visual, audio, and sensor token se-
quences zv, za, zs ∈ RLm×E , we concatenate
them into a unified token matrix Z ∈ RL×E , where
L = Lv + La + Ls. We apply multi-head at-
tention between the query embedding zq and Z
as: Q = zqW

Q, K = ZWK , V = ZWV ,
where WQ,WK ,WV ∈ RE×dk are learned pro-
jections. Temporal order is preserved via sinu-
soidal positional embeddings, as in standard Trans-
former encoders. The aggregated attention output
is M = softmax

(
QK⊤
√
dk

)
V.

Unlike standard multi-head attention–which
uses similarity-based weights across modalities–
QuART introduces a relevance projection head,
WR ∈ RE×L, that learns to score tokens con-
ditioned on the query. This separation enables
the model to prioritize semantically relevant to-
kens even when distractors receive high attention
weights–a key advantage under modality mismatch.
QuART uses learned relevance scores to priori-
tize tokens based on the question. For instance,
when asked about gentle placement, it emphasizes
sensor deceleration and impact sounds while down-

weighting static visual frames. If the camera is oc-
cluded and the user trips, only IMU spikes and au-
dio thuds are informative–QuART gates out blank
video. This behavior generalizes, suppressing off-
screen audio when questions target visual actions.
This token-level relevance scores are computed as:
α = softmax(MWR). The fused context vector,
C =

∑L
j=1 αjZj aggregates query-weighted to-

kens across all modalities and conditions the LLM
decoder. This learned relevance outperforms raw
attention (Section 6.2).
Training Objective. The decoder Π predicts the
output sequence {yt}Tt=1 conditioned on C, trained
via autoregressive cross-entropy: LQuART =

− 1
T

∑T
t=1 log pθ(yt | y<t,C). To promote

sparse selection of relevant tokens, we intro-
duce an entropy-based regularizer: Lreg =∑L

j=1 αj logαj .The total loss is

LRAVEN = LQuART + λLreg (1)

We encourage sparsity via entropy regularization
scaled by λ. Relevance is disabled in early stages
(C = Z, λ = 0) and enabled in the final stage with
λ = 0.001. See Appendix E for implementation &
hyperparameters and Appendix H for cost analysis.
Table 7 and Appendix G demonstrate QuART’s
advantage over SOTA alignment methods.



5 Alignment-Aware Multi-Stage Training
for Multi-Modal Reasoning

We adopt a three-stage training procedure to opti-
mize RAVEN and its query-conditioned alignment
module. Each stage targets a distinct component–
projection alignment, query-token fusion, and ro-
bustness to input degradation–stabilizing learning
and reducing cross-modal interference (Figure 3).
Stage I: Modality-Text Pre-Training. In this
pretraining stage, we use a large-scale, weakly
labeled dataset of modality-text pairs: {video,
text}, {image, text}, {audio, text}, and
{sensor, text}, collected from caption-rich
sources, e.g., WavCaps (Mei et al., 2024), and
InternVid-10M (Wang et al., 2023). We adopt a
sequential, modality-specific training strategy to
avoid inter-modal interference and stabilize pro-
jection learning. Supervision is provided via natu-
ral language captions or transcriptions paired with
raw modality inputs, such as video subtitles, au-
dio narrations, and wearable sensor logs. For each
modality m ∈ {v, a, s}, we freeze the pretrained
encoder Φm(·) and language model Π, and update
only the corresponding projection head Pm to align
with textual supervision. All three branches are
trained in succession using the same LLM decoder,
promoting consistent language grounding across
modalities.
Stage II: Query-Token Alignment Joint-
Training. After modality-specific alignment, we
train the QuART module to perform token-level
fusion conditioned on natural language queries.
We use the AVS-QA dataset for this stage, which
provides synchronized video, audio, sensor, and
query-answer supervision (Equation 1). All
modality encoders Φv,Φa,Φs and their projection
heads are frozen to preserve previously learned
alignments. We initialize QuART from scratch
and train it to compute relevance-weighted token
representations that bridge cross-modal informa-
tion and the query context. In parallel, we fine-tune
the LLM decoder Π using Low-Rank Adaptation
(LoRA) (Hu et al., 2022) with rank 256, offering
efficient adaptation to fused multi-modal inputs
without catastrophic forgetting. This stage enables
query-aware modality fusion, teaching RAVEN
to prioritize informative tokens for reasoning and
generation.
Stage III: Modal-Discrepancy Aware Fine-
tuning. To improve robustness under real-world
conditions, we fine-tune RAVEN using per-

turbed multi-modal inputs that simulate modality
mismatch–such as dropped sensor packets or off-
screen audio. We apply stochastic transformations
independently to each modality: video undergoes
frame jitter, dropout, or temporal inversion; audio
is corrupted with Gaussian noise, reversed, or re-
placed with unrelated samples; sensor signals are
perturbed with zero-centered Gaussian noise based
on empirical variance (see Appendix D). Perturbed
inputs D̃ = {ṽ, ã, s̃} are encoded by frozen en-
coders Φm and passed through the trained QuART
module and LoRA-adapted decoder Π. During this
stage, we activate entropy regularization to sharpen
token relevance and encourage sparse, discrimi-
native alignment. We set λ = 0.001 in the final
stage, as it yields the best trade-off between spar-
sity and accuracy (see Section 6.2); earlier stages
use λ = 0. See Appendix E for full training details.

6 Experimental Evaluation of RAVEN

Training Datasets. RAVEN is pretrained (Stage I)
on 13.1M weakly aligned modality–text pairs (e.g.,
InternVid-10M, WavCaps, SensorCaps), and fine-
tuned (Stages II–III) on 510K high-quality QA
pairs from AVS-QA. See Appendix E.1 for details.
Validation Datasets. We evaluate on seven audio-
visual QA benchmarks spanning exocentric and
egocentric domains: AVSD (Alamri et al., 2019),
MUSIC-QA (Li et al., 2022), AVSSD (Chen et al.,
2020), MSVD-QA (Alamri et al., 2019), MSRVTT-
QA (Xu et al., 2016), ActivityNet-QA (Yu et al.,
2019), and EgoThink (Cheng et al., 2024a), plus
the 58K held-out test set from AVS-QA (Ap-
pendix F.2). Evaluation metrics (GPT based) fol-
low prior work (Maaz et al., 2023) as detailed in
Appendix F.3.
Baseline Models. We compare against SOTA mod-
els across both domains. For egocentric QA: Val-
ley (Luo et al., 2023), VideoChat (Li et al., 2023c),
VTimeLLM (Huang et al., 2024), PandaGPT (Su
et al., 2023), MacawLLM (Lyu et al., 2023), AV-
LLM (Shu et al., 2023), Video-LLaMA (Zhang
et al., 2023a), AVicuna (Tang et al., 2024), and
Video-LLaMA2 (Cheng et al., 2024b); for exocen-
tric QA: OpenFlamingo (Awadalla et al., 2023),
BLIP-2.6 (Li et al., 2023b), VideoChat-7B (Li
et al., 2023c), LLaVA-1.5 (Liu et al., 2024a),
MiniGPT4 (Zhu et al., 2023b), InstructBLIP (Liu
et al., 2023b), LLaMA-Adapter (Zhang et al.,
2023b), VideoLLaVA (Lin et al., 2023a), and
ShareGPT4V (Chen et al., 2024a). All baselines



Table 2: Comparison of RAVEN and prior MLLMs on exocentric open-ended video QA (MSVD-QA, MSRVTT-
QA, ActivityNet-QA) and audio-visual QA (AVSD, MUSIC-QA) benchmarks. Best and second-best scores are in
bold and underline. ∗ indicates scores reproduced by us.

Modality
Method Video Audio

#Pairs
(M)

LLM
size AVSD MUSIC-

QA AVSSD MSVD-
QA

MSRVTT-
QA

ActivityNet-
QA

Valley ✓ ✗ 1.5 13B - - - 65.4 45.7 26.5
VideoChat ✓ ✗ 25.0 7B - - - 56.3 45.0 26.5
Video-ChatGPT ✓ ✗ 0.9 7B - - - 64.9 49.3 35.2
VTimeLLM ✓ ✗ 0.7 7B - - - 69.8 58.8 45.5
PandaGPT ✓ ✓ 128.0 13B 26.1 33.7 32.7 46.7 23.7 11.2
Macaw–LLM ✓ ✓ 0.3 13B 34.3 31.8 36.1 42.1 25.5 14.5
AV–LLM ✓ ✓ 1.6 7B 52.6 45.2 - 67.3 53.7 47.2
Video–LLaMA ✓ ✓ 2.8 13B 36.7 36.6 36.7 51.6 29.6 12.4
AVicuna ✓ ✓ 1.1 7B 53.1 49.6 - 70.2 59.7 53.0
Video-LLaMA2 ✓ ✓ 2.0 7B 50.6∗ 66.3∗ 71.4 - - -

RAVEN ✓ ✓ 0.8 7B 55.1+3.6% 69.8+5.0% 70.2-1.7% 73.3+4.2% 63.1+5.4% 57.6+8.0%

use official checkpoints (See Appendix F.1).

6.1 Quantitative Results

Exocentric Audio-Visual. Table 2 shows that
RAVEN outperforms SOTA models on video QA
(by up to 8.0%) and AVQA (by 5.0%), surpass-
ing QA-specific fusion models (e.g., AV-LLM,
Macaw–LLM). These gains stem from QuART’s
fine-grained, query-conditioned relevance scores,
which enhance alignment and suppress irrelevant
inputs. Performance is competitive but not supe-
rior on curated benchmarks like AVSSD, where
modality-based relevance scoring may be less im-
pactful due to limited cross-modal variability.
Egocentric Audio-Visual Results. Table 3 re-
ports results on EgoThink and AVS-QA. RAVEN
achieves the highest overall performance–53.5 av-
erage on EgoThink (+14.6%) and 0.67 on AVS-QA
(+7.5%)–with strong gains in Completeness (0.71,
+9.8%) and Correctness (0.69, +8.7%). While
baselines like OpenFlamingo-7B and BLIP-2.6-7B
perform moderately (e.g., 21.0 on Count, 0.31 on
Completeness), and VideoLLaVA-7B excels in spe-
cific categories (e.g., 66.0 in Situated), RAVEN
delivers the best overall scores.
Sensor-Aware Evaluation on AVS-QA. Table 4 re-
ports results on AVS-QA across modalities (V/A/S)
and metrics (Completeness, Coherence, Accuracy,
Avg). RAVEN performs better than baselines like
VideoLLaMA2 with A+V fusion (+21.8% avg).
However, RAVEN with A+V+S achieves an addi-
tional performance gain of 16.4% – highlighting
the benefit of sensor modality and sensor-aware
reasoning. These results validate the importance
of query-guided sensor integration for context-rich
QA.
Cross-modal mismatch. Table 5 shows RAVEN

effectively handles cross-modal mismatch. Trained
with Stages I and II, it outperforms prior SOTA on
AVQA by 30–79%. On AVS-QA, Stage III fine-
tuning boosts performance to 0.71–0.79, surpass-
ing Video-LLaMA2 (0.51–0.54). These gains stem
from QuART ’s query-to-token alignment, which
emphasizes semantically relevant tokens even un-
der modality misalignment.

6.2 Ablation Study

Training Stages and Loss Conditioning. We ab-
late training stages, loss formulation, and regular-
ization strength across six QA benchmarks (Ta-
ble 6). Conditioning LQuART on contextual embed-
dings C (vs. raw Z) in Stage II improves perfor-
mance (e.g., AVS-QA Avg: 0.49 vs. 0.44), con-
firming the value of context in alignment. Adding
regularization in Stage III boosts robustness but is
sensitive to λ: a high value (1.0) hurts performance
(AVS-QA Avg: 0.30), while λ = 0.001 yields the
best results–raising AVS-QA Avg to 0.78 (+43%),
Coherence to 0.82 (+15.9%), and Accuracy to 0.73
(+16.4%). Similar gains appear on ActivityNet-QA
(+18.4%) and MUSIC-QA (+24.5%). Overall, best
performance is achieved with Stage III, context-
aware LQuART, and λ = 0.001–highlighting the
synergy between structured alignment and cali-
brated regularization.
Effect of Learnable Relevance Projection (WR).
Table 7 compares QuART ’s learnable projection
head WR against raw attention and two state-of-
the-art token relevance methods: Q-Former (Li
et al., 2023b) and HierarQ (Azad et al., 2025).
QuART achieves the highest accuracy across all
benchmarks while using fewer parameters (45M
vs. 188M/390M). By transforming attention scores
into query-conditioned relevance weights, WR en-



Table 3: Comparison of RAVEN with MLLMs on the EgoThink (Reasoning) and AVS-QA benchmarks. RAVEN
outperforms across metrics and excels in reasoning. Bold and underline indicate the best and second-best scores.

EgoThink (Reasoning) AVS-QA
Method Count Compar Situated Avg Comp. Coher. Acc. Avg

OpenFlamingo 0.21 0.40 0.21 0.27 0.31 0.34 0.27 0.31
BLIP-2.6 0.03 0.21 0.33 0.19 0.22 0.26 0.21 0.23
VideoChat 0.36 0.39 0.32 0.36 0.29 0.33 0.37 0.33
LLaVA-1.5 0.20 0.47 0.37 34.7 0.46 0.47 0.52 0.48
MiniGPT-4 0.14 0.48 0.31 0.31 0.19 0.29 0.34 0.27
InstructBLIP 0.18 0.43 0.67 0.42 0.33 0.37 0.35 0.35
LLaMA-Adapter 0.29 0.39 0.25 0.31 0.25 0.31 0.29 0.28
PandaGPT 0.19 0.52 0.53 0.41 0.38 0.42 0.41 0.40
VideoLLaVA 0.39 0.38 0.60 0.46 0.42 0.46 0.45 0.44
ShareGPT4V 0.30 0.38 0.66 0.45 0.64 0.63 0.59 0.62

RAVEN 0.40+2.7% 0.54+3.4% 0.66-1.5% 0.54+14.8% 0.71+9.8% 0.69+8.7% 0.61+3.28% 0.67+7.5%

Table 4: AVS-QA results comparing RAVEN
with SOTA models using different modality
combinations.

Method V A S Comp. Coher. Acc. Avg

✓ ✗ ✗ 0.27 0.32 0.23 0.27
Macaw-LLM

✓ ✓ ✗ 0.38 0.46 0.34 0.39

✓ ✗ ✗ 0.36 0.42 0.33 0.37
Panda-GPT

✓ ✓ ✗ 0.43 0.49 0.38 0.43

✓ ✗ ✗ 0.37 0.33 0.28 0.33
VideoLLaMA

✓ ✓ ✗ 0.48 0.51 0.41 0.47

✓ ✗ ✗ 0.51 0.54 0.43 0.49
VideoLLaMA2

✓ ✓ ✗ 0.56 0.59 0.51 0.55

✓ ✗ ✗ 0.61 0.62 0.46 0.56
✓ ✓ ✗ 0.71 0.69 0.61 0.67RAVEN
✓ ✓ ✓ 0.78 0.82 0.73 0.78

Table 5: Comparison under cross-modal mismatch scenarios.
RAVEN with Stage III fine-tuning consistently outperforms base-
line methods across all evaluation metrics and benchmarks, demon-
strating superior robustness to modality perturbations.

AVS-QA
Method AVSD MUSIC

QA
MSVD

QA
Activity
Net-QA Comp. Cohr. Acc. Avg.

PandaGPT 12.2 13.8 21.8 7.9 0.23 0.29 0.26 0.26
Macaw-LLM 18.1 14.5 22.2 10.6 0.11 0.21 0.19 0.17
AV-LLM 24.7 22.1 49.8 26.8 - - - -
Video-LLaMA 17.9 24.6 31.5 25.3 0.28 0.39 0.33 0.33
AVicuna 34.1 31.3 51.7 31.9 - - - -
Video-LLaMA2 43.2 44.7 52.1 29.7 0.51 0.54 0.48 0.51

RAVENI, II 51.9 63.7 66.4 52.6 0.69 0.71 0.64 0.68
RAVENI – III 54.9 69.2 72.8 57.2 0.76 0.79 0.71 0.75

Table 6: Ablation on training stages (II & III), conditioning LQuART on Z
(LQuART|Z) vs. C (LQuART|C), and regularization strength λ.

Training
Stage Loss λ AVSD MUSIC

QA AVSSD MSVD
QA

Activity
Net-QA

AVS-QA

Comp. Cohr. Acc. Avg.

Up to
Stage II

LQuART|Z - 45.2 53.2 58.8 60.3 45.1 0.38 0.52 0.42 0.44

LQuART|C - 48.7 57.7 61.5 63.9 51.2 0.42 0.57 0.47 0.49

Up to
Stage III

w/o Lreg - 40.7 48.5 59.3 61.5 43.2 0.29 0.41 0.34 0.35

with
Lreg

1 41.5 45.3 53.2 57.9 39.7 0.23 0.37 0.29 0.30
0.1 48.3 56.2 54.7 64.2 45.8 0.62 0.69 0.59 0.63
0.01 52.2 61.8 61.2 68.1 51.6 0.71 0.78 0.68 0.72
0.001 55.1 69.8 70.2 73.3 57.6 0.78 0.82 0.73 0.78

Table 7: Effect of WR. QuART out-
performs with fewer parameters.

Method Raw
attention

Q -
Former HierarQ QuART

#Params ↓ 41M 188M 390M 45M

AVSD 29.1 36.7 - 55.1

MUSIC-QA 23.6 36.6 - 69.8

MSVD-QA 42.2 51.6 66.2 73.3

ActivityNet
-QA 12.1 12.4 57.2 57.6

MSRVTT
-QA 23.1 29.6 54.1 63.1

ables efficient and interpretable cross-modal align-
ment. Additional ablations – including encoder
choices, LoRA rank, token selection – are provided
in Appendix G, along with qualitative examples in
Appendix I.

7 Conclusion

In this paper, we present RAVEN, a unified
framework for multimodal question answering
that integrates video, audio, and sensor inputs
via query-aware alignment, enabling robust rea-
soning under modality disagreement. To sup-
port this, we release AVS-QA–the first large-scale
dataset of synchronized {Audio, Video, Sensor,

QA} quadruples–curated via an automated actor-
evaluator-critic pipeline. Spanning egocentric set-
tings and four QA types, AVS-QA enables compre-
hensive benchmarking. Our three-stage training–
modality pretraining, query-conditioned alignment,
and perturbation-aware fine-tuning–drives consis-
tent gains across diverse multimodal QA bench-
marks. These results underscore the importance
of structured, query-aware reasoning in handling
real-world modality mismatch.



8 Limitations

While RAVEN provides a strong foundation
for multimodal question answering over audio,
video, and sensor inputs, our current experi-
ments are limited to a single backbone model,
Qwen-Instruct-7B, due to computational con-
straints. We do not explore larger LLM vari-
ants (e.g., 13B or 70B), which could further im-
prove performance but require significantly more
resources. Additionally, we leave the investigation
of alternative language backbones and more ad-
vanced fusion strategies (e.g., retrieval-augmented
alignment, memory-based conditioning) as future
work.

We also note that for longer recordings (exceed-
ing ∼5 minutes), particularly those involving vi-
sually dense scenes, RAVEN occasionally under-
performs on vision-heavy queries. This is likely
caused by our uniform frame selection strategy,
which may miss critical visual cues in longer videos
because of sparse temporal sampling. Incorporat-
ing adaptive or query-guided frame selection could
mitigate this issue and improve temporal ground-
ing.

Finally, training RAVEN is computationally ex-
pensive. Our current setup required approximately
120 hours on 4 NVIDIA A100 GPUs (each with
80 GB of memory). While the design is efficient at
inference time due to early token filtering, future
work could further reduce training cost through
distillation or parameter sharing across modalities.
Future Directions. Future work on RAVEN in-
cludes exploring joint training strategies across
modalities to enable deeper cross-modal interac-
tions and more robust representation learning. In-
corporating a saliency-aware frame selection mech-
anism may further improve performance on long-
form, visually complex inputs. Additionally, re-
ducing or eliminating the need to fine-tune the
LLM backbone when introducing new modalities
remains an open challenge. Addressing this could
significantly improve the scalability, adaptability,
and deployment efficiency of multimodal language
models.

9 Ethical Considerations

The AVS-QA dataset is derived entirely from pub-
licly released egocentric datasets (Ego4D (Grau-
man et al., 2022) and EPIC-Kitchens (Damen et al.,
2018)) that include usage licenses permitting re-
search redistribution. Our processing pipeline

does not introduce new identity annotations, and
we do not extract or distribute personally identifi-
able metadata. AVS-QA contains synthetic ques-
tion–answer pairs generated from visual, auditory,
and sensor summaries, and no raw video, audio,
or IMU recordings are included in the release. We
follow best practices for anonymization and respect
the original datasets’ ethical use guidelines.

10 Risk Statement

Our multimodal language model integrates audio,
visual, and sensor inputs to enhance reasoning, but
it raises several concerns. First, misuse of MLLMs
in surveillance, biometric inference, or manipula-
tion of multi-sensory content raises ethical con-
cerns regarding user privacy and consent, espe-
cially when applied to egocentric or sensor-rich
environments. Additionally, the interpretability of
cross-modal reasoning remains limited, making it
difficult to identify failure cases or mitigate halluci-
nations across modalities. We recommend careful
deployment of such systems with human oversight,
ongoing auditing of training data sources, and fu-
ture work on explainability and robust alignment
to reduce these risks.
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A More Related Works

This section includes additional models, datasets,
and encoder variants relevant to our work that were
not cited in the related work of the main paper
due to space constraints. We list them here for
completeness and to acknowledge recent progress
in MLLMs and sensor-grounded QA.
Large Language Models. Mixtral (Jiang et al.,
2024), Vicuna (Zheng et al., 2023b), Phi (Ab-
din et al., 2024), OPT (Zhang et al., 2022),
PaLM (Chowdhery et al., 2023)
Sensor MLLMs. MentalLLM (Xu et al.,
2024b), IMUGPT2.0 (Leng et al., 2024), Sen-
sor2Text (Chen et al., 2024c), Penetrative AI (Xu
et al., 2024a), PH-LLM (Cosentino et al., 2024),
PHIA (Merrill et al., 2024)
Feature Alignment. VLMo (Bao et al., 2022),
FILIP (Yao et al., 2021), ALIGN (Li et al., 2021),
ImageBind (Girdhar et al., 2023), CoCa (Yu
et al., 2022), EgoVLPv2 (Pramanick et al., 2023),
HiTeA (Ye et al., 2023), Mixed Q-Former (Wang
et al., 2024)

B AVS-QA Dataset Details

B.1 Curation and Statistical Summary
Dataset Curation Stages. In the Actor phase, we
generated 387K question–answer pairs. The Evalu-
ator filtered out 12.14% based on predefined con-
straints. In the Critic phase, an additional 40K QA
pairs were discarded based on aggregate scores
from multiple critics. This results in a final dataset
of 300K high-quality QA pairs used for training
and evaluation.
Distribution of Question Types. AVS-QA in-
cludes four primary question types to support di-
verse reasoning tasks: open-ended, close-ended,
true/false, and multiple choice. Figure 4 shows
the distribution of these four categories. “Oth-
ers” category include instructional or dialogue-
style prompts that do not fit traditional QA formats.
This variety enables comprehensive benchmarking
across free-form generation and structured predic-
tion settings.
Length Distribution of Questions and Answers.
We analyze the word-length distributions of ques-
tions and answers in AVS-QA to better understand
their linguistic diversity. As shown in Figure 5,
most questions are concise, with a mode around 9–
10 words and a long-tail distribution extending up
to 40 words. This variation arises from the presence
of both short, structured formats (e.g., true/false,

Open-ended; 
35%

Close-ended; 27%

True-False; 
19%

Multiple 
choice; 16%

Others; 3%

Figure 4: Distribution of question types in AVS-QA.
The dataset includes a diverse mix of open-ended, close-
ended, true/false, multiple choice, and other formats,
supporting comprehensive evaluation settings.
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Figure 5: Length of questions has some variation due to
different types of questions.

multiple choice) and more descriptive open-ended
queries.

Figure 6 shows that a large number of answers
consist of a single word, primarily due to true/false
and multiple choice formats. In contrast, close-
ended and open-ended questions yield longer and
more varied responses, contributing to a broad dis-
tribution that peaks between 3–10 words and ex-
tends beyond 25 words. These distributions high-
light the reasoning and generation challenges posed
by AVS-QA.
License. AVS-QA is released under a CC-BY 4.0
license, along with the full generation pipeline, in-
cluding prompts, templates, and filtering scripts.

B.2 Quality Ranking via LLM Scoring

To evaluate the quality of multi-modal (audio,
video, sensor) question-answer pairs, we design
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Figure 6: True/false and multiple choice questions often
lead to one-word answers, while open-ended and close-
ended formats yield a broader distribution of answer
lengths.

a set of five quality assessment axes. Each axis
is rated on a 5-point Likert scale (1 = poor, 5 =
excellent) by large language models (LLMs) using
structured prompts:
Answerability. Evaluates whether the question
is answerable based on the provided multi-modal
context. A high score indicates that the combined
modalities contain sufficient and coherent informa-
tion to support a correct and complete answer.
Hallucination Robustness. Measures the extent to
which the answer avoids introducing information
not grounded in the provided modalities. Higher
scores indicate reliable adherence to the multi-
modal context, while lower scores reflect a greater
risk of hallucination.
Cross-Modal Grounding. Assesses the degree
to which the answer integrates information across
modalities (e.g., referencing audio to explain visual
content). Higher scores reflect strong cross-modal
coherence and accurate alignment with modality-
specific cues relevant to the question.
Specificity. Measures the level of detail and preci-
sion in the answer relative to the question. Higher
scores indicate clear, specific, and well-defined re-
sponses that avoid vague or generic statements,
offering informative and actionable insights.
Relevance. Measures how directly the answer ad-
dresses the intent and scope of the question. Higher
scores indicate focused, contextually appropriate
responses that are clearly aligned with the queried
scenario and available modalities.

Each QA pair is scored across the five axes by
LLaVA-1.5(Liu et al., 2024a), Gemeni Pro (Team
et al., 2023), Qwen-VL (Bai et al., 2023), GPT-4o

(Achiam et al., 2023), LLaMA-3 (Grattafiori et al.,
2024) in a zero-shot setting. We compute the final
quality score by averaging the axis-level ratings.
We discard QA pairs where≥2 axes receive a score
<3 from at least 3 of 5 LLMs. This threshold was
chosen based on alignment with human judgment
(see Appendix B.3).

B.3 Human Evaluation
We conducted a human evaluation on a randomly
selected subset of 300 question-answer pairs from
AVS-QA. Two expert annotators independently re-
viewed each sample and assigned quality ratings
based on the accompanying video, audio, and sen-
sor data. Ratings follow the same 5-point Likert
format as the LLM scorer.

We categorized the pairs based on human agree-
ment: Satisfied (both annotators rate ≥4), Okay
(mixed rating: one ≥4, one <4), and Not Satisfied
(both <4). We observe 81% Satisfied, 7% Okay,
and 12% Not Satisfied.

This aligns closely with the filtering per-
formed by our LLM critic, which rejected 40K
of the initial 340K QA pairs (11.76%), indicat-
ing strong agreement between human and au-
tomatic judgments. This suggests that our LLM-
based scoring framework is a reliable proxy for
human evaluation at scale.

We recruited two annotators through internal
advertisements at the host institution. Both male
annotators were between 25–35 years old and had
a basic understanding of large language models.
Participation was voluntary, and no financial incen-
tives were provided.

B.4 Prompt for Dataset Curation
We use a structured Actor–Evaluator–Critic
pipeline for automatic generation and refinement
of question–answer pairs. Figures 7–12 show the
system and user prompts used at each stage of this
pipeline.

In the Actor phase, a language model
is provided with multimodal scene descrip-
tions—including audio, video, IMU data sum-
maries, and human narration—and is prompted to
generate diverse questions spanning open-ended,
close-ended, multiple choice, and true/false for-
mats. The prompt encourages context-aware and
modality-specific reasoning (see Figures 7–8).

In the Evaluator phase, a second model verifies
the answerability, modality grounding, and factual
correctness of each QA pair. The system prompt



I will provide you with 5 different pieces of information from 
different modalities (visual, audio, IMU)  about a scene where 
someone performs some type of activity.  The information 
contains:
1.  A narration for the entire scene
2. Objects present in the scene, and their normalized bounding 
box as a list of tuples. 
3. A summary of the scene from the audio describing the scene 
only hearing the audio.
4. Statistical features from the IMU data for the accelerometer 
and gyroscope in the x, y, and z-axis.
5. A human describing the activity.

I want you to be a smart agent, imagine yourself present in the 
scene, and consider all the modalities to understand the entire 
scene. Now you have to generate question-answer pairs of 
different types (e.g., open-ended, close-ended, multiple choice, 
True-False, etc.). The question-answers should require multi-
step and complex reasoning to answer. Use one or multiple 
modality information to generate the questions and answers. 
Ensure that the knowledge and reasoning chains in the question 
are precise and sufficiently challenging, to the extent that 
only experts in the respective field can provide adequate 
responses.

Here are some examples of different question-answer types:
What is the person likely doing in the scene?
Answer: The person is likely eating at the table, as there is a 
plate of <food_name>, and a <some_utencils>present.

The person is actively cutting <object_name_1>, and a 
<object_name_2> is present. True or False?
Answer: Cutting <object_name_1> True, but <object_name_2> is not 
present.

Figure 7: System prompt used for generating ques-
tions and answers in Actor phase.

Please generate two question answers of each type of open-ended, 
close-ended, multiple choice and True-False. Generate five 
answers for each open-ended question and single answer for other 
type of questions.  Give the output in a list of JSON format 
e.g., [{{“question”: ”Generated Question”, “answer_1”: 
“Generated Answer 1”, “answer_2”: “Generated Answer 2”, 
“question_type”: “question_type”}}, ….]. The “question_type” 
would be of one of these four types (open-ended, close-ended, 
multiple choice, True-False).

Entire Scene Narration: {}
Objects Present: {}
Audio Description: {}
IMU features: {}
Human description: {}

Figure 8: User prompt used for generating questions
and answers in Actor phase.

(Figure 9) outlines constraints regarding modality
coverage, object grounding, and language consis-
tency. The human prompt (Figure 10) ensures no
hallucinated corrections are introduced—only local
improvements to existing QA pairs.

In the Critic phase, large language models are
prompted to rate the quality of each generated
question–answer pair using four dimensions: rel-
evance, correctness, clarity, and depth. As shown
in Figures 11–12, the system prompt instructs
the model to consider all five available modality-
specific inputs (narration, object list, audio sum-
mary, IMU features, and human description) before
assigning a score.

The user prompt standardizes the response for-
mat and explicitly prohibits speculative reason-
ing or textual justification—ensuring consistent,

I will provide you multiple questions and corresponding answers 
which were generated using 5 different pieces of information 
from different modalities (visual, audio, IMU)  about a scene 
where someone performs some type of activity.  The information 
contains
1.  A narration for the entire scene
2. Objects present in the scene, and their normalized bounding 
box as a list of tuples. 
3. A summary of the scene from the audio describing the scene 
only hearing the audio.
4. Statistical features from the IMU data for the accelerometer 
and gyroscope in the x, y, and z-axis. 
5. A human describing the activity.

I will also provide you the five different information that were 
used.

I want you to be a smart evaluator who can analyze the quality 
of generated questions and answer using the provided information 
from all modalities.
You have to make sure that the following constrains have been 
followed strictly. 

The question-answer pairs must meet the following constraints:
1. MUST exclude terms like “according to the narration”, 
“according to the audio description,”, "Human narration", "based 
on scene description", "audio description", etc from both 
Questions and Answers. You should generate questions and answer 
them as if you are present in the scene and reason from one or 
more modalities.
2. Question-answer pairs should be as diverse as possible.
3. Only ask the questions that can be answered. If a question 
can not be answered from one modality try other modalities to 
answer that. For example, if something is not visible (obscure 
in visual modality) use audio or IMU to find the answer.
4. The answers should be less than 30 words.
5. When generating questions about any object, first make sure 
that the object is present in the "objects present" list or 
match with the entire scene narration.
6. Use both human description and entire scene narration when 
describing the scene. if there is inconsistency between these 
two, prioritize human description.

if the constraints are not met for any given question answer 
pair, update them accordingly and save them in a similar form in 
a json file. DO NOT CHANGE QUESTIONS ENTIRELY, ONLY IMPROVE 
THEM. Additionally, do not add any co-ordinates.

Figure 9: System prompt used for generating ques-
tions and answers in Evaluator phase. The constraints
ensure avoiding some phrases or groups of words to en-
hance the quality of question-answer pairs.

Please determine if the question-answer pair strictly follow the 
constraints based on the following five information:
Entire Scene Narration: {}
Objects Present: {}
Audio Description: {}
IMU features: {}
Human description: {}

Only output the updated question and answers.
DO NOT MENTION ANY KEY IMPROVEMENTS IN THE OUTPUT OR ANY OTHER 
TEXT EXCEPT QUESTIONS AND ANSWERS.

Figure 10: User prompt used for generating questions
and answers in Evaluator phase.

numerical evaluations across samples. Each QA
pair receives two scores (one for the question, one
for the answer), which are then aggregated across
multiple critics to determine inclusion in the final
dataset. QA pairs with low aggregate scores are
discarded during the final curation step.

This prompt engineering strategy supports di-
verse and high-quality QA generation without
human-in-the-loop authoring.



I will provide you multiple questions and corresponding answers 
which were generated using 5 different pieces of information 
from different modalities (visual, audio, IMU)  about a scene 
where someone performs some type of activity.  The information 
contains
1.  A narration for the entire scene
2. Objects present in the scene, and their normalized bounding 
box as a list of tuples.
3. A summary of the scene from the audio describing the scene 
only hearing the audio.
4. Statistical features from the IMU data for the accelerometer 
and gyroscope in the x, y, and z-axis. 
5. A human describing the activity.

I will also provide you the five different information that were 
used.

I want you to be a critic who can analyze the quality of 
generated questions and answer using the provided information 
from all modalities.
You have to analyze their relevance, clarity, depth and 
correctness. Based on these four criteria rate the quality of 
each questions and answers on a scale of 1-5.

Figure 11: System prompt used for generating ques-
tions and answers in Critic phase.

Please rate the quality of questions and answers considering the 
relevance, correctness, clarity, and depth based on the 
following five information:
Entire Scene Narration: {}
Objects Present: {}
Audio Description: {}
IMU features: {}
Human description: {}

DO NOT OUTPUT THE ORIGINAL QUESTIONS AND ANSWER. OUTPUT ONLY THE 
QUALITY SCORE. DO NOT OUPUT ANY REASONING OR THOUGHT. 

Please generate the response in the form of a Python dictionary 
string with keys, 'Question', 'Answer’. For example, your 
response should look like this:
{Question: 3.1, Answer: 4.8}

Figure 12: User prompt used for generating questions
and answers in Critic phase.

C Additional Model Architecture Details

C.1 LIMU-BERT Pre-Training

As our sensor encoder, we employ LIMU-
BERT (Xu et al., 2021), a multi-head attention-
based encoder-decoder architecture. LIMU-BERT
is a lightweight, BERT-inspired self-supervised
representation learning model designed for mo-
bile IMU (Inertial Measurement Unit) sens-
ing applications. It processes unlabeled IMU
data—accelerometer, gyroscope, and magnetome-
ter readings—to learn generalizable features. The
architecture incorporates a normalization and sen-
sor fusion layer, followed by a transformer en-
coder with cross-layer parameter sharing to reduce
model size. It adopts a span-masking version of
the Masked Language Modeling (MLM) task to
learn both distributional and temporal patterns from
the IMU sequences. We adopt the official LIMU-
BERT implementation under the MIT license for
research use.

C.2 Unimodal Encoder Pre-Training

We use the VideoLLaMA2 (Cheng et al., 2024b)
codebase for pre-training the vision encoder. The
encoder is initialized from a SigLIP checkpoint
and fine-tuned with instructional video datasets in-
cluded in the VideoLLaMA2 training suite. This
setup enables the model to learn temporal and
spatial reasoning over egocentric and exocentric
scenes. The code is released under the Apache 2.0
license and used strictly for research purposes.

C.3 Projection Layer

Each modality-specific encoder output is projected
to the LLM input dimension using a tailored strat-
egy. The output of the audio encoder is projected
through a two-layer multi-layer perceptron (MLP)
to align with the LLM dimension. For the video
encoder output, we use a spatio-temporal convolu-
tional (STC) connector for spatio-temporal learn-
ing of the video. STC connector uses RegStage
(Radosavovic et al., 2020) with 3D convolution for
downsampling the video output. We use a publicly
available adaptation of the STC-connector in our
implementation (Cheng et al., 2024b) under the
license of Apache 2.0 for research purposes only.

D Cross-Modal Mismatch Generation
and Robustness Evaluation

Cross-modal mismatch refers to the condition in
which the semantic alignment between different
input modalities—such as audio, video, and sensor
streams—is disrupted. In real-world multi-modal
systems, such mismatches frequently arise due to
noise, missing data, or temporal desynchronization
between modalities. Understanding and address-
ing cross-modal mismatch is crucial for building
robust models capable of effective reasoning across
modalities.

To systematically evaluate model robustness un-
der such conditions, we introduce a synthetic cross-
modal mismatch generation process. Given a clean
multi-modal datapoint D = {a, v, s}, where a, v,
and s denote the synchronized audio, video, and
sensor streams respectively, we construct a per-
turbed version D′ = {a′, v′, s′} by applying one or
more of the following perturbations:
Modality-Specific Noise Injection.: Gaussian or
environmental noise is added to the audio a and/or
video v streams, degrading signal fidelity while
preserving temporal structure.
Temporal Reversal.: The temporal sequence of



Algorithm 1 Algorithm for generating Cross-Modal Mismatch

1: function GENERATECROSSMODALMISMATCH(D = {a, v, s})
2: Initialize D′ = {a′, v′, s′} ← {a, v, s}
3: Define Paudio ← {ADDNOISE, REVERSE, REPLACEWITHIRRELEVANT, NOPERTURBATION}
4: Define Pvideo ← {ADDNOISE, REVERSE, REPLACEWITHIRRELEVANT, NOPERTURBATION}
5: Define Psensor ← {ADDJITTER, REPLACEWITHIRRELEVANT, NOPERTURBATION}
6: if RandomChoice([True, False]) then
7: a′ ← RandomChoice(Paudio)(a)
8: else
9: a′ ← a

10: end if
11: if RandomChoice([True, False]) then
12: v′ ← RandomChoice(Pvideo)(v)
13: else
14: v′ ← v
15: end if
16: if RandomChoice([True, False]) then
17: s′ ← RandomChoice(Psensor)(s)
18: else
19: s′ ← s
20: end if
21: return D′ = {a′, v′, s′}
22: end function

audio or video is reversed independently, altering
the causal and sequential semantics of events.
Sensor Perturbation.: Random noise or jitter is
added to sensor streams (e.g., IMU data), simulat-
ing faulty or low-resolution sensor readings.
Modal Replacement.: One or more modalities
(e.g., audio) are replaced with semantically irrel-
evant counterparts sampled from other unrelated
datapoints in the dataset, creating intentional cross-
modal conflict.

These perturbations simulate realistic mis-
matches commonly encountered in egocentric and
exocentric environments, such as microphone oc-
clusion, corrupted video frames, or misaligned sen-
sor logging. This synthetic mismatch generation
enables controlled stress testing of multi-modal
models, revealing their capacity to handle noisy,
misaligned, or contradictory inputs across modal-
ities. Algorithm 1 explains the process used for
generating cross-modal mismatch.

E Training and Implementation Details

E.1 Dataset for Multistage Training

Along with our in-house data (AVS-QA), we use
publicly available datasets to train the video, au-
dio, and sensor encoders. To pre-train the sensor

encoder, we use epic kitchen (Damen et al., 2018),
ego4D (Grauman et al., 2022),HHAR (Stisen
et al., 2015), UCI-HAR (Reyes-Ortiz et al.,
2016), Shoaib (Shoaib et al., 2014), Motion-
Sense (Malekzadeh et al., 2019), PAMAP2
(Roggen et al., 2010) data. We use pre-trained
SigLIP as our video encoder and then fine-tune
it with datasets from videoLLama2 (Cheng et al.,
2024b). Similarly, we use a pre-trained audio en-
coder, Beats, and fine-tune it with WavCaps (Mei
et al., 2024) datasets (Chen et al., 2022). We lever-
age SensoCaps and OpenSQA (Imran et al., 2024)
for the sensor pretraining part. Table 8 summarizes
the dataset used at different stages of training.

E.2 Hyperparameters for Training

RAVEN has 8.5B parameters, including all the
encoders, projection layers, QuART, and LLM
backbone. Table 9 summarizes the key hyperpa-
rameters used during training.

E.3 Train-Test split

For all publicly available datasets used during pre-
training and fine-tuning, we adopt the official train–
test splits provided by their respective authors. For
our curated dataset, AVS-QA, we create a standard-
ized train–test split to ensure consistent evaluation



Table 8: Datasets used at each training stage of RAVEN. AVS-QA contributes to all three stages, enabling both
sensor-text alignment and robust fine-tuning under cross-modal mismatch.

Training stage Dataset #Pairs

Modality-Text Pre-Training
Vision-Text

InternVid-10M (Wang et al., 2023), WebVid-10M (Bain et al., 2021),
Panda-70M (Chen et al., 2024b), VIDAL-10M (Zhu et al., 2023a),
CC-3M (Changpinyo et al., 2021), DCI (Urbanek et al., 2024)

12.2 M

Audio-Text WavCaps (Mei et al., 2024) 400K

Sensor-Text OpenSQA (Imran et al., 2024), SensorCaps (Imran et al., 2024) 205K

Query-Token Alignment Joint-Training
AVQA(Yang et al., 2022), AVSSD (Chen et al., 2020),
MUSIC-AVQA (Li et al., 2022),
AVSD (Alamri et al., 2019), AVS-QA

403K

Modal-Discrepency Aware Fine-Tuning
AVQA (Yang et al., 2022), AVSSD (Chen et al., 2020),
MUSIC-AVQA (Li et al., 2022),
AVSD (Alamri et al., 2019), AVS-QA

510K

Table 9: Key hyperparameters used in training RAVEN.
Token counts reflect the number of input tokens per
modality. We adopt a 6-layer transformer with 8 atten-
tion heads, a LoRA rank of 4256, and use AdamW for
optimization.

Description Notation Value

Number of audio tokens La 1496
Number of video tokens Lv 1352
Number of sensor tokens Ls 120
Embedding dimension E 3584
Number of total token L 2968
Numer of heads h 8
Number of encoder layer N 6
Each head dimension dk 448
Batch size (local/global) - 1/4
LoRA rank r 4256
Optimizer - AdamW
Weight decay - 0.03

and reproducibility. To prevent data leakage and
overfitting, we ensure the input sessions for curat-
ing AVS-QA train and test split remain completely
separated. The split files are publicly available
in our GitHub repository https://github.com/
BASHLab/RAVEN/tree/main/avs-qa-dataset.

F Evaluation Details

F.1 Evaluation Baselines

Video-LLaMA. Video-LLaMA extends LLaMA
by incorporating frozen video encoders (TimeS-
former, X-CLIP) to extract spatio-temporal fea-
tures, which are linearly projected into the LLM
input space. It is trained via instruction tuning and
multi-modal supervised learning, enabling video

captioning, question answering, and reasoning with
generalization from few-shot examples.
Video-LLaMA2. Video-LLaMA-2 builds upon its
predecessor by introducing spatio-temporal con-
nectors, which better align video representations
with the LLM input through a more structured fu-
sion mechanism. Additionally, Video-LLaMA-2
leverages more powerful video encoders and larger
training corpora, making it more robust for real-
world multimodal applications.
PandaGPT. PandaGPT integrates CLIP for visual
features and BEATs for audio features, followed
by a Q-Former to project them into the token space
of a language model (Vicuna). PandaGPT supports
multi-turn dialogue grounded in both visual and
auditory content, enabling it to reason over video-
audio-text contexts.
Macaw-LLM. Macaw-LLM adopts a modular de-
sign where a dedicated encoder process each modal-
ity, and the features are fused into a shared em-
bedding space for the language model. Inspired
by BERT-style pretraining, Macaw-LLM supports
tasks such as cross-modal retrieval, multimodal
classification, and audio-visual QA.
VideoChat. VideoChat introduces a video-
grounded dialogue system that enables interactive
conversations about dynamic visual content. It uses
a pre-trained video encoder (like X-CLIP or Swin-
BERT) to extract frame-wise representations and
then aligns these with LLaMA through lightweight
adapters. VideoChat supports both single-turn and
multi-turn video QA, offering real-time conversa-
tional abilities over video inputs. It was among the
first open-source models to demonstrate effective
temporal video grounding in LLM-based dialogue.
VideoChatGPT. VideoChatGPT extends

https://github.com/BASHLab/RAVEN/tree/main/avs-qa-dataset
https://github.com/BASHLab/RAVEN/tree/main/avs-qa-dataset


VideoChat by incorporating end-to-end video-LM
alignment with improved temporal reasoning and
multi-frame understanding. It utilizes a stronger
video encoder and enhanced fusion modules (e.g.,
spatio-temporal attention layers) to feed richer
video context into the LLM.
VALLEY. VALLEY (VisuAL Langauge Learner
with Large memorY) is designed for multi-modal
memory-augmented video reasoning. It focuses
on long-term memory alignment across video seg-
ments and text, allowing the model to retain and
reference past frames effectively during reasoning.
VALLEY combines a hierarchical visual encoder
with a memory-enhanced transformer decoder that
interacts with a language model, enabling it to han-
dle long videos and multi-step reasoning tasks such
as procedural understanding, storytelling, and tem-
poral localization.
VTimeLLM. VTimeLLM (Video-Time Language
Model) focuses on temporal video understanding
by aligning spatio-temporal features with natural
language in a query-aware manner. It introduces
a temporal reasoning module that captures the or-
der, duration, and causality of events in video seg-
ments. Using a dual-stream architecture with tem-
poral attention and frame-level token sampling,
VTimeLLM fuses visual and language information
for downstream tasks such as video QA, moment
retrieval, and video narration.
AV-LLM. AV-LLM integrates auditory and visual
modalities using CLIP for images/videos and Whis-
per or BEATs for audio with a frozen LLaMA.
It employs a cross-modal projection layer and
lightweight adapters to fuse the modalities, en-
abling zero-shot and instruction-tuned tasks like
audio-visual QA, event description, and sound-
source reasoning.
AVicuna. AViCuna is a chat-centric audio-visual
instruction-following model that combines audio
and video features into a unified token stream for
a conversational LLM based on Vicuna. It uses
Q-Former modules to encode BEATs for audio and
CLIP for video features, and feeds these to the
LLM via a learned query-token bridge.
OpenFlamingo. OpenFlamingo fuses a frozen
CLIP-ViT with a pre-trained language model via
a perceiver-style cross-attention module. The key
innovation lies in its interleaved visual-text token
interface, which allows the model to reason over
multimodal sequences without further fine-tuning.
OpenFlamingo supports tasks such as image cap-
tioning, VQA, and multi-image reasoning in an

efficient and instruction-following setting.
SahreGPT4V. ShareGPT4V emphasizes the im-
portance of caption quality in multimodal learn-
ing, showing that even a modest amount of rich,
semantically dense image-text pairs can signifi-
cantly improve LMM performance. It uses GPT-4V
to generate 100k captions and further extend the
dataset to a 1.2m sample by using a caption model.
ShareGPT4V is then fine-tuned with this caption
dataset as a foundational MMLLM.
MiniGPT-4. MiniGPT-4 mimics GPT-4V’s capa-
bilities using open components. It pairs a frozen
CLIP-ViT with a Vicuna-based LLM via a linear
projection layer, trained with a two-stage instruc-
tion tuning pipeline. MiniGPT-4 achieves strong
performance with low computational cost.
BLIP-2.6. BLIP-2.6 is an evolution of BLIP-2,
further improving the alignment between vision
encoders and LLMs using a multistage pretraining
and fine-tuning strategy. It enhances the Q-Former
mechanism and supports longer and denser vision-
language interactions with better grounding fidelity.
BLIP-2.6 shows improvements in instruction fol-
lowing, fine-grained captioning, and long-context
multimodal tasks while maintaining the zero-shot
generalization strength of BLIP-2.
InstructBLIP. InstructBLIP is an instruction-
tuned extension of the BLIP-2 family, designed to
align vision-language pretraining with task-specific
prompts. It introduces a flexible prompting mecha-
nism and uses a frozen vision encoder with a train-
able Q-Former to bridge the modality gap to an
LLM.

F.2 Evaluation Datasets
InternVid-10M. InternVid-10M is a large-scale
video-text dataset comprising approximately 10
million video-caption pairs, designed to support
pretraining of multimodal large language models.
The videos are sourced from diverse domains, and
the captions are refined to improve visual-textual
alignment.
WebVid-10M. WebVid-10M consists of 10 million
video-text pairs harvested from web sources, partic-
ularly short-form videos with associated metadata
or alt-text. Although noisier than manually curated
datasets, its sheer scale makes it valuable for video-
language pretraining.
Panda-70M. Panda-70M is a massive multimodal
dataset containing over 70 million aligned video,
audio, and text triplets. It is curated from open-
domain videos, including instructional content, to



cover a wide variety of real-world scenarios. The
dataset is designed for training models that re-
quire joint understanding of video, audio, and lan-
guage, enabling tasks such as multimodal reason-
ing, audio-visual captioning, and cross-modal re-
trieval at scale.
Vidal-10M. VIDAL-10M is a curated dataset com-
prising 10 million high-quality video-caption pairs
aimed at enhancing temporal and contextual under-
standing in multimodal models. It includes dense
and descriptive captions aligned with diverse video
domains, enabling robust pretraining for video-
language models. VIDAL-10M emphasizes tempo-
ral consistency and semantic diversity, supporting
tasks like video QA, moment retrieval, and event
understanding.
CC-3M. CC-3M is a widely-used image-text
dataset containing approximately 3 million image-
caption pairs sourced from the web. The captions
are filtered and cleaned alt-text annotations that
loosely describe the visual content. While the de-
scriptions can be noisy and lack fine-grained de-
tail, it is valuable for large-scale vision-language
pretraining, especially for image-text retrieval, cap-
tioning, and contrastive representation learning.
DCI. DCI is a dataset developed to improve
instruction-following in vision-language models
by pairing images with rich, instruction-style de-
scriptions. The captions are generated using
large language models guided by carefully de-
signed prompts to increase informativeness and
task relevance. DCI serves as a bridge between
standard image-caption datasets and instruction-
tuned models, supporting applications like visual
instruction-following, grounded question answer-
ing, and image-based reasoning.
WavCaps. WavCaps is a large-scale audio-text
dataset designed to enhance audio-language pre-
training. It includes over 400,000 audio clips paired
with captions, either collected from metadata or
generated via model-based annotation pipelines.
Covering a wide range of sound events—from
speech and music to environmental and mechani-
cal sounds—WavCaps supports tasks such as audio
captioning, sound event detection, and cross-modal
audio-text retrieval.
SensorCaps. SensorCaps is a pioneering sensor-
language dataset that pairs time-series data from
inertial measurement units (IMUs) and other body-
worn sensors with detailed natural language de-
scriptions. Designed to support tasks like sensor
captioning and multimodal grounding, SensorCaps

bridges wearable sensing data with large language
models. It enables multimodal LLMs to reason
about human actions, physical context, and tempo-
ral dynamics from sensor inputs.
OpenSQA. OpenSQA is a benchmark dataset for
sensor-based question answering, aiming to bring
structured reasoning capabilities to models process-
ing sensor time-series data. It includes labeled
QA pairs grounded in sensor streams from IMU
collected in real-world contexts. OpenSQA sup-
ports open-ended and multiple-choice questions,
making it a valuable testbed for evaluating sensor-
to-text alignment and semantic understanding in
multimodal models.
AVSD. AVQA is a benchmark dataset specifically
designed for evaluating audio-visual reasoning ca-
pabilities in multimodal models. It includes videos
paired with open-ended and multiple-choice ques-
tions that require joint analysis of both visual con-
tent and audio cues. AVQA challenges models to
perform fine-grained audio-visual fusion for an-
swering questions about actions, events, or contex-
tual elements that span both modalities.
AVSSD. AVSSD is a large-scale dataset contain-
ing over 200,000 audio-video clips spanning 310
sound classes. Each clip is approximately 10 sec-
onds long and is sourced from YouTube, covering
a wide range of natural and human-made sounds.
AVSSD supports weakly-supervised learning and
cross-modal modeling, especially for tasks like
sound classification, audio-visual event detection,
and audio grounding in video.
MUSIC-AVQA. MUSIC-AVQA is a specialized
dataset designed for audio-visual question answer-
ing in musical contexts, where questions require
understanding of both the visual performance and
the auditory output of musical instruments. It is
built upon the MUSIC dataset, which includes iso-
lated instrument performances. MUSIC-AVQA ex-
tends MUSIC with over 7,000 QA pairs involving
tasks such as instrument identification, sound lo-
calization, source counting, and event timing. The
questions are crafted to assess fine-grained audio-
visual reasoning, where answers depend on spatial,
temporal, and semantic alignment of what is seen
and heard.
AVQA. AVQA is a benchmark dataset specifically
designed for evaluating audio-visual reasoning ca-
pabilities in multimodal models. It includes videos
paired with open-ended and multiple-choice ques-
tions that require joint analysis of both visual con-
tent and audio cues. AVQA challenges models to



{"role": "system",
"content": "You are an intelligent chatbot designed for 
evaluating the correctness of generative outputs for question-
answer pairs. "
"Your task is to compare the predicted answer with the correct 
answer and determine if they match meaningfully. Here's how you 
can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the meaningful match between the predicted answer 
and the correct answer.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the correctness of the prediction compared to the 
answer."
},
{"role": "user",
"content":
"Please evaluate the following video-based question-answer 
pair:\n\n"
f"Question: {question}\n"
f"Correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a yes/no, coherence where 
coherence is a float value between 0 and 1 with 1 indicating the 
highest meaningful soundness of the predicted answer with given 
question, and score where the score is an integer value between 
0 and 1, with 1 indicating the highest meaningful match. "
"Please generate the response in the form of a Python dictionary 
string with keys 'binary_pred' 'coherence', and 'score', where 
value of 'binary_pred' is a string of 'yes' or 'no' , value of 
'coherence' is in FLOAT not STRING and value of 'score' is in 
FLOAT, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only 
provide the Python dictionary string. "
"For example, your response should look like this: 
{'binary_pred': 'yes', 'coherence': 0.79, 'score': 0.7}."
}

Figure 13: System and user prompt used to evaluate the
generated answer quality.

perform fine-grained audio-visual fusion for an-
swering questions about actions, events, or contex-
tual elements that span both modalities.

EgoThink. EgoThink is a benchmark designed
to evaluate the first-person perspective reasoning
capabilities of vision-language models (VLMs).
It comprises question-answer pairs derived from
egocentric video clips, focusing on six core capa-
bilities across twelve detailed dimensions. The
dataset emphasizes tasks that require models to un-
derstand and reason from a first-person viewpoint,
such as anticipating future actions or interpreting
personal experiences. Evaluations of eighteen pop-
ular VLMs on EgoThink reveal that, while models
like GPT-4V perform well in certain areas, there
remains significant room for improvement in first-
person perspective tasks. EgoThink serves as a
valuable resource for advancing research in embod-
ied artificial intelligence and robotics.

F.3 Evaluation Metric

Following previous work (Maaz et al., 2023), we
leverage GPT-3.5-turbo to evaluate the generated
answer quality. Figure 13 depicts the evaluation
prompt.

Table 10: Comparison of video encoders across three
QA benchmarks. SigLIP consistently outperforms all
ViT variants, demonstrating stronger temporal and vi-
sual grounding for video-based question answering.

Datasets
Video

Encoder MSVD-
QA

MSRVTT-
QA

ActivityNet-
QA

ViT-B/16 65.7 51.4 45.9
ViT-L/14 67.3 53.7 47.2
ViT-H/14 67.5 54.2 47.5

SigLip 73.3 63.1 57.6

Table 11: Performance of audio encoders across QA
datasets. BEATs achieves the highest accuracy on all
benchmarks, surpassing Whisper variants in multimodal
reasoning tasks.

Datasets
Audio

Encoder MSVD-
QA

MSRVTT-
QA

ActivityNet-
QA

Whisper-T 66.5 51.6 46.2
Whisper-B 67.7 53.1 47.4
Whisper-S 68.1 53.9 47.6

BEATs 73.3 63.1 57.6
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Figure 14: Impact of LoRA rank on QA accuracy
across five benchmarks. Accuracy improves steadily
with higher ranks, saturating near 256, indicating that
moderate-rank adapters suffice for effective multimodal
alignment and reasoning.

G Ablation Study

Effect of Modality Encoder. We investigate the
influence of visual and audio encoder choices on
model performance across three video QA bench-
marks (Tables 10, 11). For vision, scaling standard
ViT architectures from B/16 to H/14 yields only
marginal improvements (e.g., +1.8% on MSVD-



QA), suggesting limited benefits from increasing
model capacity alone. In contrast, substituting ViT
with SigLip, a vision-language pretrained model
leads to substantial performance gains (73.3 vs.
67.5 on MSVD-QA), demonstrating the impor-
tance of cross-modal alignment during pretraining.
On the audio side, scaling Whisper encoders from
Tiny to Small results in modest improvements (e.g.,
+1.6% on MSVD-QA), but all Whisper variants are
outperformed by BEATs, a model pretrained on
diverse acoustic signals. Notably, BEATs achieves
a +5.2% gain over Whisper-Small on MSVD-QA,
highlighting the efficacy of domain-specific audio
pertaining.
LoRA Rank Selection. Figure 14 shows an ab-
lation on LoRA rank. Lower ranks improve ef-
ficiency but may limit representational capacity,
while higher ranks offer greater adaptability at a
higher cost. Performance peaks at r = 256, indi-
cating it provides the best trade-off between com-
putational overhead and task effectiveness.

Table 12: Comparison of QuART with General Fusion
Approaches. QuART performs better due to its token-
level reasoning capabilities.

Datasets
Fusion
Model AVSSD MSRVTT-

QA

Imagebind 27.8 27.8
MBT 64.1 –
AVFIC – 19.4

QuART 70.2 63.1

Comparison of QuART with General Fusion
Approaches. We compare QuART with state-
of-the-art general-purpose fusion models (Image-
Bind (Girdhar et al., 2023), MBT (Nagrani et al.,
2021), and AVFIC (Nagrani et al., 2022)), which
are not optimized for QA tasks. As shown in Ta-
ble 12, QuART outperforms these models, high-
lighting the benefit of QA-specific supervision and
token-level fusion for effective reasoning.

H Compute Cost and Environmental
Impact

We train our model using four NVIDIA A100
GPUs (80GB each) with a total CPU memory of
256GB. Evaluation is performed on four NVIDIA
L40S GPUs (46GB each). Training runs for 120
hours with a local batch size of 1 and a global batch
size of 4. We use a learning rate of 1 × 10−3 for

the projection layers and 1× 10−5 for fine-tuning
the encoder layers.

We estimate the total energy consumption to
be approximately 1,200 kWh, based on the aver-
age power draw of an A100 system under mixed
precision load. Following the ML CO2 emissions
calculator (Lacoste et al., 2019), this corresponds
to an estimated carbon footprint of 420 kgCO2e
when using the U.S. average energy mix.

I Qualitative Results

Figures 15 – 19 illustrate the performance of
RAVEN across diverse real-world scenarios.
While RAVEN demonstrates strong performance
using only audio and visual inputs, the inclusion of
sensor data consistently improves robustness and
interpretability.

In particular, 17 and 18 highlight how sensor in-
formation enhances the correctness and relevance
of both the predicted answer and its supporting ex-
planation. Conversely, Figure 19 presents a failure
case where the model, even with full audio-video-
sensor input, fails to infer the correct task due to
subtle contextual clues across modalities that might
not clearly differentiate similar tasks, hindering ac-
curate inference.



Was the user actively cooking or stirring
something in the pot on the stove?

We observe a cooking setup  
with a spatula in the pot. 
Audio suggests no sound of  
stirring. IMU data confirms 
no hand or body movement, 
consistent with no  stirring or 
shifting stance. Together, 
these cues verify that the 
user is not actively cooking, 
moving, and speaking during 
the activity.

A pot on the stove with
 a spoon or spatula inside, 

indicating food preparation. 
However, without motion 
cues, it’s uncertain if the

user is actively stirring or 
simply placed the utensil 
there earlier. There’s no 
indication of speaking or

precise  movement.

Audio+Video Audio+Video+
Sensor

Figure 15: Example illustrating the value of sensor input for activity disambiguation. Given the question “Was
the user actively cooking or stirring something in the pot on the stove?”, the Audio+Video model observes
a cooking scene but cannot confirm active engagement due to the absence of motion cues. In contrast, the
Audio+Video+Sensor model leverages IMU data to detect a lack of body movement and integrates audio signals to
confirm no stirring, allowing it to infer that the user is not actively cooking.

  What activity is the person likely engaged in?

Audio+Video Audio+Video+
Sensor

The person is likely
washing dishes especially
lathering a ladle in the
kitchen sink. The sound of
water running and dishes
being washed with the
presence of sink and bowl,
and hand likely explain the
activity. 

The person is lathering a
ladle with hands in the
kitchen sink. The IMU data
confirms very small variance
due to the person's less
movement. Water running
sound and low IMU movement
suggest small washing
activity.

Figure 16: Example illustrating subtle activity disambiguation using multimodal reasoning. Given the question
“What activity is the person likely engaged in?”, the Audio+Video model identifies dishwashing activity based on
sink visibility and audio cues such as water flow. The Audio+Video+Sensor model enhances this understanding
by incorporating IMU data, which reveals low hand and body movement. This confirms a controlled, repetitive
action consistent with small-scale washing (e.g., lathering a ladle), demonstrating the added value of sensor input
for refining temporal and motion-level interpretations.



   Is the person involved in any other activities
   other than washing hands?

Audio+Video Audio+Video+
Sensor

The person is not likely
doing any other activities
other than washing
hands. The presence of
hand and water sound
confirm washing hands.
No other information is
available to suggest other
activities.

The person is reaching for
soap besides washing hands.
While presence of hands
and water running sound
establish washing hands
activities, sudden changes
in IMU data suggest
movement of the arm to
reach for the soap.

Figure 17: Example demonstrating the added value of sensor data in identifying subtle concurrent actions. Given
the question “Is the person engaged in any other activities other than washing hands?”, the Audio+Video
model detects only hand presence and water sounds, concluding that no other activities are evident. In contrast,
the Audio+Video+Sensor model identifies a sudden IMU spike, indicating arm movement associated with
reaching for soap–capturing a secondary action that is visually and acoustically ambiguous.

What is the person doing with his bicycle?

Audio+Video Audio+Video+
Sensor

The person is likely talking
with someone while
standing near the bicycle.
The person is not riding
the bicycle as evident from
the sound made by the
person and as it is parked
near the wall. 

The person might be 
adjusting the bike's tire 
pressure while conversing. 
The bicycle is parked in a 
sidewalk and  constant 
changes in IMU data 
confirms a continuous 
movement happening in the 
scene.  

Figure 18: Example showcasing multimodal reasoning for fine-grained activity understanding. Given the question
“What is the person doing with his bicycle?”, the Audio+Video model identifies that the person is not riding
the bicycle and is likely talking nearby. In contrast, the Audio+Video+Sensor model captures continuous IMU
fluctuations, suggesting active engagement, such as adjusting the bike’s tire pressure, demonstrating the added
interpretive power of sensor input.



  Was the person washing dishes or putting the
  bowl in the sink?

Audio+Video Audio+Video+
Sensor

The person was washing
dishes as evident from
the bowl, sink, towel,
and bottle. Audio also
confirms water running
sound in the
background. Thus the
person is most likely
washing dishes.

The person might be 
washing dishes as sink, 
bowl, and bottle are 
present. Imu data 
confirms some movement 
likely due to washing 
dishes. Water running 
sound also could be heard 
in the background.

Figure 19: Example illustrating confirmatory reasoning across modalities. Given the question “Was the person
washing dishes or putting the bowl in the sink?”, the Audio+Video model infers dishwashing based on visible
objects (bowl, sink, towel) and background water sounds. The Audio+Video+Sensor model tries to strengthen
this conclusion with IMU evidence from the wrong source, inconsistent with washing actions, reinforcing the
activity label through motion-based verification.
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