A Novel Approach to Digital Media Accessibility

for Visually Impaired People

CEO Megan Ashun, CMO Edward Goodwin, CTO Rishab Nair, & CIO Jared Rosen Advisors: Dr. Kevin Crowthers, Liz Myska | WPI Faculty Consultant: Aymon Langlois

PROBLEM STATEMENT

Visually impaired individuals **lack** adequate access to digital literature (Wei-Haas, 2017).

ENGINEERING GOAL

We aimed to create an instantaneous and **inexpensive** device that could convert online text to a *physical Braille display*.

CURRENT DESIGN

The Braille Slider (Ver. II)

Level 1 Requirements	
1	The device produces accurate braille.
2	The device should efficiently change braille characters.
3	The device should meet the budget constraints set by the Massachusetts Academy of Math & Science.
4	The device should have an intuitive design.

Brainstorm solutions for the problem Seek advice from professionals in the field CAD the device in Onshape Test and assess the device for functionality Build the prototype

METHODOLOGY

DESIGN II The Braille Slider (Ver. 1)

Pros

• Sliders provide stable braille configurations

- Lower durability
- Gears get stuck at edges Motor functionality low

DESIGN III Rotational Braille Wheel

Pros

- Compact
- Cons
- Extra mechanisms needed
- Not precise
- Mechanism for keeping pins up needed

DESIGN IV Electromechanical Braille Cell

- Pros
- Extremely Compact
- Quick
- Reliable
- Cons
- Very Costly
- Difficult to manufacture

DESIGN STUDY I

Optimal Braille Production Method

<u>Purpose</u>: To determine which design best displays all Braille characters

Independent Variable: Design type

<u>Dependent Variable</u>: Average success rate of displaying Braille characters

Conclusion: The slider without the gear produces the most accurate Braille display (p < 0.005)

DESIGN STUDY II

Gear Angles

Purpose: To determine at which angle the gear is needed to be held for the Braille slider to produce the most accurate display

Independent Variable: Gear angle

<u>Dependent Variable</u>: Ability of the Braille slider to successfully and smoothly slide within the device

Conclusion: The slider is best able to move when the gear is coordinated at a angle of 10 degrees above the horizontal

CONCLUSIONS & FUTURE WORK

- Adjusting the location of the axel and the size of the gear would significantly improve this device's accuracy, as seen in the results of the design studies.
- This device could be significantly descaled using a more fine-tuned 3D printer to create a further inexpensive and accurate mass-producible prototype.