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Calculations:
Incline 1:

Measurement Pair Equation X-axis Y-axis Slope

v, Δx v^2=v0^2 + 2aΔx
v^2=(0) + 2aΔx
v=sqrt(2aΔx)

sqrt(Δx) v sqrt(2a)

Equation Best Fit Line Using
Terms of the

Measurement Pair
Variables

Constant to Solve For Work Shown

v^2=v0^2 + 2aΔx v=0.7475(sqrt(Δx)) a sqrt(2a)=0.7475
2a=0.559

a=0.279 m/s2

Incline 2:

Measurement Pair Equation X-axis Y-axis Slope

v, Δx v^2=v0^2 + 2aΔx
v^2=(0) + 2aΔx
v=sqrt(2aΔx)

sqrt(Δx) v sqrt(2a)

Equation Best Fit Line Using
Terms of the

Measurement Pair
Variables

Constant to Solve For Work Shown

v^2=v0^2 + 2aΔx v=1.1276(sqrt(Δx)) a sqrt(2a)=1.1276
2a=1.271

a=0.636 m/s2

Explanation:

In the lab, my group and I measured two variables: distance (in meters) and velocity (in

meters per second squared). However, when these two variables are graphed, with distance on

the x-axis and velocity on the y-axis, the graph is not linear. I manipulated one of the kinematics

formulas to linearize the data, which means to make the relationship between the two variables a



linear relationship. I chose the no-time formula, which is v^2=v0^2 + 2aΔx, because it has the

variables velocity, distance, and acceleration, which is what we’re solving for. So, as I’ve shown

above in the tables, to linearize the equation, first I got rid of the term v0^2 because the initial

velocity was 0, making v0^2 equal to 0 as well. Then, I took the square root of both sides so that I

was left with v=sqrt(2aΔx), which is a linear equation. If you split the square of 2aΔx into the

square root of 2a times the square root of Δx, the square root of 2a acts as the slope of the

equation, and the square root of Δx acts as the dependent variable.

To make a linear graph, I graphed the dependent variable, the square root of distance

(sqrt(m)), on the x-axis, and the independent variable, average velocity (m/s2), on the y-axis.

After graphing these points, I used the equation of the line to calculate the acceleration. Since I

already defined the slope of the line to be the square root of 2a, to solve for acceleration, all I did

was equate the slope of the line with the square root of 2a and solve for a.

Conclusion:

Evaluation of results:

For incline 1, my acceleration value came out to be about 0.279 m/s2. The expected

acceleration is calculated by using the formula a=gsin(θ). In the formula, g is always 9.8 m/s and

θ is the angle of incline. To find the angle of the incline (θ), I used the measurements of the

height (4.0 cm) and length (102.0 cm) of the incline taken during the experiment. Since the

height of the incline is opposite to the angle of the incline (θ) and the length of the incline is like

the hypotenuse of a right triangle, sin(θ) equals 4.0/102.0. After plugging into the formula

(a=9.8*(4.0/102/0)), the expected acceleration came out to be 0.384 m/s2. The percent error is

equal to ((experimental-expected)/expected)*100, which calculates out to be -27.3%.



For incline 2, my acceleration value came out to be about 0.636 m/s2. The expected

acceleration is calculated by using the formula a=gsin(θ). To find sin(θ), I used the exact same

series of steps, except for incline 2, the height was 8.0 cm, and the length was 102.0 cm. After

plugging into the formula (a=9.8*(8.0/102.0)), the expected acceleration came out to be 0.769

m/s2. The percent error is equal to ((experimental-expected)/expected)*100, which calculates out

to be -17.3%.

Sources of error:

Since my experimental acceleration turned out to be lower than the expected acceleration,

there are a few sources of error I have to consider. The first source of error could be the friction

on the carts used to collect data in the experiment. If the carts had any friction between the

wheels and the tracks, the velocity and acceleration would be decreased, which is what I’m

guessing happened in this experiment. Even though we were in a controlled environment,

another possible source of error could be the air resistance. Any air resistance would decrease the

velocity and acceleration of the carts, which could explain why our experimental error is

significantly negative. An additional source of error could be the measurements of the distances.

While my group and I measured the distance the cart traveled as accurately as possible, we most

likely weren’t perfect. Some small inaccuracies in our measurements of the distances could

throw off the calculated acceleration. Since my calculated acceleration was less than expected,

that would mean that if we did make mistakes in measuring the distances, we would have

measured too little on some of the trials, which would as a result decrease the slope and the

acceleration. Since in this experiment the expected acceleration was calculated, there are also

some possible sources of error in its calculation process. The only possible source of error in the



calculation of the expected acceleration is the height and length of the incline. If my group and I

inaccurately measured the height of the incline, we would’ve overmeasured it. An increased

measurement of the height would increase the expected value, which would also increase the

percent error negatively. If my group and I inaccurately measured the length of the incline, we

would’ve undermeasured it. A decreased measurement of the length would increase the expected

value, which would resultantly also increase the percent error negatively.


