STEPKEYS: AQWERTY Foot Keyboard

Shaurya Patni (CEO), Max Grisanti (CTO), Vasu Lakshmanan (CIO), Rishi Patel (CMO)

Advisor: Kevin Crowthers, Ph.D. WPI Faculty Support: Ulkuhan Guler, Ph.D.

Problem Statment

While **typing** seems second nature to most, it can be extremely **difficult** or even impossible for individuals suffering from **hand mobility issues** or those **without hands** ("Arthritis," 2023).

Engineering Goal

A **foot keyboard** that accommodates their **mobility limitations** and enables efficient keyboard functionality with the **user's feet**.

Methodology

1. Design Drawings	2. Prototype
Initial designs were	Proof-of-concepts were
sketched and used to	created using materials
brainstorm device	in school to visualize the
functionality.	final product.
3. CAD Designs	4. Final Design
CAD models were	Our final design was
developed for 3D-	built with metal , wires ,
printed parts to build	Arduino, and 3D-printed
the final design.	parts.

Requirements

Level (most important to least)	Requirement Type	Requirement Statement
1	Functional	The design must have functional keys
1	Physical Functional	The design must be durable
1	Physical Functional	The design cannot allow user to sustain injury easily
1	Physical Functional	The design cannot be uncomfortable
1	Physical	The design must allow the user to rest their feet in order to have some breaks
1	Physical Functional	The design must have keys large enough so that the user can distinguish each individual key
1	Functional	The keyboard must support wireless connectivity to remove the need of cables
2	Functional	The design must be suitable for everyday environments such as a workplace or home
2	Cost	The design must not be more expensive than \$150
2	Physical	The design cannot be heavy
2	Physical Functional	The design must not allow for accidental typos due to small spacing
2	Physical	The design may add anti-slip materials/features to allow for stability and prevent the keyboard from moving during use
3	Physical	The design should allow for adjustable height and angle accomadation for different users
3	Appearance	The design should be aesthetically pleasing
3	Physical	The design can minimize noise produced during typing to have a quiet environment

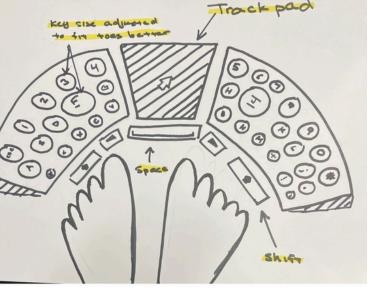
Current Design

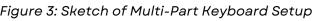
Multi-Part Keyboard Setup

Figure 1: Current Ergonomic Design (Physical Prototype #2)

- Versatile key configurations
- **Multipurpose** functionality for keys
- Angular tilt for increased ease of use
- **Optimal** utilization of space
- **Dynamic** sizing of the keys

Design 3


Multi-Part Keyboard Setup


Includes

apart

trackpad

Keys spread

Design 2

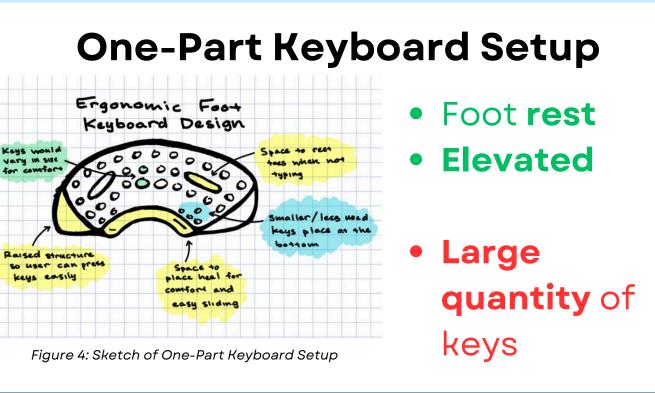
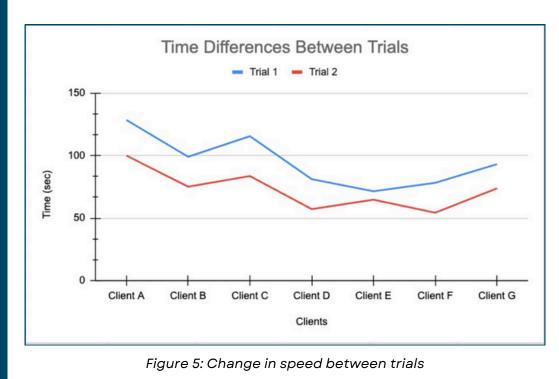
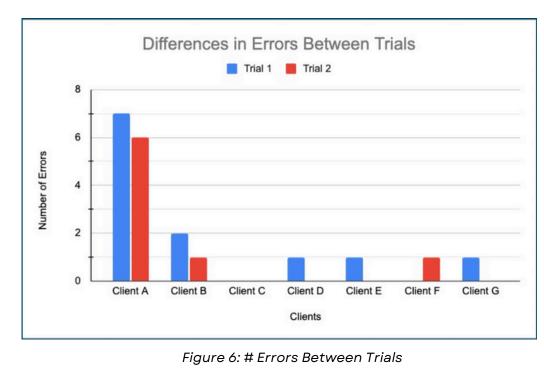

ErgoFlex Multi-Function Keyboard

Figure 2: Proof of Concept of the ErgoFlex Multi-Function Keyboard


- Less keys
 Less
 - Learning curve

Design 4



Design Studies

Design Study 1: Timed Typing

In this study, clients were **timed** as they **typed** "The quick brown fox jumps over the lazy dog" using the keyboard. This process was **repeated twice**, and it was found that all users were able to **quickly adapt** to the keyboard and **improve their speed**.

Design Study 2: Errors While Typing

Similarly to Study 1, this study analyzed the **change in errors** made between trials. Almost all users made **fewer errors** in the second trial, indicating that they were able to **adjust** to the keyboard layout.

Conclusion & Future Work

- StepKeys provides a way for users with limited hand/arm movement to use a functional keyboard so they can type without pain.
- Adding anti-slip material to enhance grip
- **Optimizing** the **angle** adjustment piece on the back of the keyboard for users
- Creating the keyboard with a built-in antibacterial material so that it remains clean