
LineArt.java Thursday, January 8, 2026, 10:40 PM

1import java.awt.Color;
2import java.awt.Dimension;
3import java.awt.Graphics;
4import java.util.Random;
5
6import javax.swing.JPanel;
7import javax.swing.JFrame;
8
9public class LineArt extends JPanel {
10
11 // Unique version ID for this class to ensure saved objects

can be loaded safely
12 private static final long serialVersionUID = 1L;
13
14 // Initial width of height of the starting rectangle
15 private static int width = 980;
16 private static int height = 630;
17
18 // main method to launch the program as a standalone

application - no need to
19 // modify
20 public static void main(String[] args) {
21 LineArt panel = new LineArt();
22 panel.setPreferredSize(new Dimension(width + 20, height +

20)); // content size window dimensions
23
24 JFrame frame = new JFrame("Line Art"); // Title of frame
25 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
26 frame.add(panel);
27 frame.pack();
28 frame.setVisible(true);
29 }
30
31 /**
32 * Draw the four corners of line art. Line art displays

straight lines inside a rectangle from one side to
33 * a perpendicular side. The lines must be drawn in such a

way that both the starting points of the lines on
34 * one side and the ending points on the other side are equi-

distant along the sides. The size of the rectangle
35 * is 980 pixels wide by 630 pixels high.
36 *
37 * @param g the Graphics object used for drawing shapes,

text, and images
38 */
39 public void drawLineArt(Graphics g) {
40
41 // Draw the initial rectangle
42 g.drawRect(10, 10, width, height);

Page 1

LineArt.java Thursday, January 8, 2026, 10:40 PM

43
44 //Box with movable k to find center
45 int k = 540; // Used to adjust the size of the rectangle

centered on origin
46 g.drawRect(500-k/2, 330-k/2*65/100, k, k*65/100-11);
47// g.drawLine(0, 325, 1000, 325); Middle Lines for Ref -

Keeping for future Ref
48// g.drawLine(500, 0, 500, 650); Middle Lines for Ref -

Keeping for future Ref
49
50 // Draw bottom-left corner
51 int y = 640;
52 for (int x=890;x>=10;x-=20) {
53 g.setColor(randomColor());
54 g.drawLine(x, 640, 10, y);
55 y-=(20*0.65);
56 }
57
58 y = 495;
59 for (int x=625;x>=230;x-=10) {
60 g.setColor(randomColor());
61 g.drawLine(x, 495, 230, y);
62 y-=(10*0.65);
63 }
64
65 // Draw bottom-right corner
66 y = 640;
67 for (int x=110;x<=990;x+=20) {
68 g.setColor(randomColor());
69 g.drawLine(x, 640, 990, y);
70 y-=(20*0.65);
71 }
72
73 y = 495;
74 for (int x=375;x<=770;x+=10) {
75 g.setColor(randomColor());
76 g.drawLine(x, 495, 770, y);
77 y-=(10*0.65);
78 }
79
80 // Draw top-left corner
81 y = 10;
82 for (int x=890;x>=10;x-=20) {
83 g.setColor(randomColor());
84 g.drawLine(x, 10, 10, y);
85 y+=(20*0.65);
86 }
87
88 y = 155;

Page 2

LineArt.java Thursday, January 8, 2026, 10:40 PM

89 for (int x=625;x>=230;x-=10) {
90 g.setColor(randomColor());
91 g.drawLine(x, 155, 230, y);
92 y+=(10*0.65);
93 }
94
95 // Draw top-right corner
96 y = 10;
97 for (int x=110;x<=990;x+=20) {
98 g.setColor(randomColor());
99 g.drawLine(x, 10, 990, y);
100 y+=(20*0.65);
101 }
102
103 y = 155;
104 for (int x=375;x<=770;x+=10) {
105 g.setColor(randomColor());
106 g.drawLine(x, 155, 770, y);
107 y+=(10*0.65);
108 }
109
110 }
111
112 public static Color randomColor() {
113 Random rand = new Random();
114 int randr = rand.nextInt(256);
115 int randg = rand.nextInt(256);
116 int randb = rand.nextInt(256);
117 return new Color(randr, randg, randb);
118
119 }
120
121 /**
122 * Overrides JPanel's paintComponent method to perform custom

drawing.
123 *
124 * @param g the Graphics object used for drawing shapes,

text, and images
125 */
126 @Override
127 protected void paintComponent(Graphics g) {
128 super.paintComponent(g); // Clears the panel before

drawing
129 drawLineArt(g);
130 }
131
132}

Page 3

