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Topics

• Background to VHDL

• Introduction to language

• Programmable Logic Devices

– CPLDs and FPGAs

– FPGA architecture

– Spartan 3 Starter Board and Nexys 2 Board

• Using VHDL to synthesize and implement a design

• Verilog overview
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Hardware Description Languages

• Example HDL's : ABEL, VERILOG, VHDL

• Advantages:

– Documentation

– Flexibility (easier to make design changes or mods)

– Portability (if HDL is standard)

– One language for modeling, simulation (test benches), and 

synthesis

– Let synthesis worry about gate generation

• Engineer productivity

• However: A different way of approaching design

– engineers are used to thinking and designing using graphics 

(schematics) instead of text.
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VHDL

• VHSIC Hardware Description Language
– Very High Speed Integrated Circuit

• Standard language used to describe digital hardware 
devices, systems and components
– Developed initially for documentation

• VHDL program was an offshoot of the US Government's 
VHSIC Program

• Approved as an IEEE Standard in December 1987 (IEEE 
standard  1076-1987)
– Revised - now 1076-1993 (supported by all tools)

– Work under way on VHDL-200X 

• Integration of 1164 std 

• General improvements, etc
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VHDL References

• IEEE Standard VHDL Language Reference Manual (1076 

– 1993) (1076-2002)

• “RTL Hardware Design using VHDL – Coding for 

Efficiency, Portability, and Scalability” by Pong P. Chu, 

Wiley-InterScience, 2006

• “Introductory VHDL From Simulation to Synthesis by 

Sudhakar Yalamanchilli, 2002, Xilinx Design Series, 

Prentice Hall 

• “VHDL Made Easy” by David Pellerin and Douglas 

Taylor, 1997, Prentice Hall
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What exactly is VHDL ?

• A way of describing the operation of a system.

– Example:  a 2-input multiplexer

ENTITY mux IS

PORT (a, b, sel :  IN std_logic;

y :  OUT std_logic);

END mux;

ARCHITECTURE behavior OF mux IS

BEGIN

y <= a WHEN sel = ‘0’ ELSE

b;

END behavior;



Jim Duckworth, WPI ECE 574 - Module 17

Example Synthesis Results (not Xilinx)
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• Note: VHDL is case insensitive, free format. 

• Semicolon (;) terminates statement

• Comments are preceded by two consecutive dashes. 

– comment ends at end of current line

• A digital component is described using an 

– ENTITY DECLARATION and a corresponding 

– ARCHITECTURE BODY.

• Std_logic is an enumeration type defined in an IEEE 

package 

– has the values '0' and ‘1’ and ‘Z’ (and others)

• Ports are like IC pins, connected by wires called SIGNALS

Basic Terminology
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IEEE STANDARD 1164

• Provides a standard data type (std_logic) - nine values

– U unitialized

– X forcing unknown

– 0 forcing logic 0 

– 1 forcing logic 1 

– Z high impedance

– W weak unknown

– L weak logic 0 

– H weak logic 1

– - don’t care

• To use standard logic data types place at top of source file

– LIBRARY ieee; -- library

– USE ieee.std_logic_1164.ALL; -- package
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Entity

• The ENTITY defines the external view of the 
component

• PORTS are the communication links between 
entities or connections to the device pins

• Note the use of libraries before entity description

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY mux IS

PORT (a, b, sel :  IN std_logic;

y :  OUT std_logic);

END mux;



Jim Duckworth, WPI ECE 574 - Module 111

Architecture

• The ARCHITECTURE defines the function or behavior or 

structure of the ENTITY

• Consists of concurrent statements, e.g.

– Process statements

– Concurrent Signal Assignment statements

– Conditional Signal Assignment statements

• An entity may have several architectures

ARCHITECTURE behavior OF mux IS

BEGIN

y <= a WHEN sel = ‘0’ ELSE

b;

END behavior;
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VHDL Notes

• There is no explicit reference to actual hardware 

components

– There are no D-type flip-flops, mux, etc

– Required logic is inferred from the VHDL description

– Same VHDL can target many different devices

• There are many alternative ways to describe the required 

behavior of the final system

– Exactly the same hardware will be produced

– Some ways are more intuitive and easier to read

• Remember that the synthesis tools must be able to deduce 

your intent and system requirements

– For sequential circuits it is usually necessary to follow 

recommended templates and style
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Programmable Logic Devices

• Xilinx user programmable devices

– FPGAs – Field Programmable Gate Array

• Virtex 4, Virtex 5, Virtex 6, and Virtex 7

• Spartan 3, Spartan 6

• Consist of configurable logic blocks

– Provides look-up tables to implement logic

– Storage devices to implement flip-flops and latches

– CPLDs – Complex Programmable Logic Devices

• CoolRunner-II CPLDS (1.8 and 3.3 volt devices)

• XC9500 Series (3.3 and 5 volt devices)

• Consist of macrocells that contain programmable and-or matrix with 

flip-flops 

• Altera has a similar range of devices
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Electronic Components (Xilinx)

Source:  Dataquest
Logic

Standard
Logic

ASIC

Programmable
Logic Devices

(PLDs)

Gate
Arrays

Cell-Based
ICs

Full Custom
ICs

CPLDs
SPLDs
(PALs) FPGAs

Acronyms

SPLD = Simple Prog. Logic Device 

PAL    = Prog. Array of Logic

CPLD = Complex PLD

FPGA = Field Prog. Gate Array

Common Resources
Configurable Logic Blocks (CLB)

– Memory Look-Up Table

– AND-OR planes

– Simple gates

Input / Output Blocks (IOB)
– Bidirectional, latches, inverters, pullup/pulldowns

Interconnect or Routing
– Local, internal feedback, and global
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Xilinx Products (Xilinx)

CPLDs and FPGAs

Architecture PAL/22V10-like Gate array-like

More Combinational More Registers + RAM

Density Low-to-medium Medium-to-high
0.5-10K logic gates 1K to 3.2M system gates

Performance Predictable timing Application dependent

Up to 250 MHz today Up to 200 MHz today

Interconnect “Crossbar Switch” Incremental

Complex Programmable Logic 

Device (CPLD)

Field-Programmable Gate Array 

(FPGA)
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Overview of Xilinx FPGA Architecture (Xilinx)

Programmable
Interconnect

I/O Blocks (IOBs)

Configurable
Logic Blocks (CLBs)

Tristate 
Buffers

Global 
Resources
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Spartan-3 FPGA Family

• “Designed to meet the needs of high-volume, cost-

sensitive consumer electronic applications”

• 326 MHz system clock rate

• Programmed by loading configuration data into static 

memory cells – place serial PROM on board

55,296

15,360

3,840

CLB 

flip-flops

$1007121,728K6,9124MXC3S4000

$12391432K1,9201MXC3S1000

$2.95173216K480200KXC3S200

Price 

(250K)

User 

IO

Block 

Ram (bits)

CLBs

(4 slices)

System 

Gates

Device
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Spartan-3E FPGA Family

• Also “specifically designed to meet the needs of high volume, cost-

sensitive consumer electronic applications. 

• builds on the success of the earlier Spartan-3 family by increasing the 

amount of logic per I/O, significantly reducing the cost per logic cell. 

New features improve system performance.

• Because of their exceptionally low cost, are ideally suited to a wide 

range of consumer electronics applications, including broadband access, 

home networking, display/projection, and digital television equipment”.

29,504

9,312

1,920

CLB 

flip-flops

<$9376648K3,6881.6MXC3S1600E

$30 1-off232360K1,164500KXC3S500E

<$210872K240100KXC3S100E

Price 

(250K)

User 

IO

Block 

Ram (bits)

CLBs

(4 slices)

System 

Gates

Device
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Programmable Functional Elements

• Configurable Logic Blocks (CLBs)
– RAM-based look-up tables to implement logic

– Storage elements for flip-flops or latches

• Input/Output Blocks
– Supports bidirectional data flow and 3-state operation

– Supports different signal standards including LVDS

– Double-data rate registers included

– Digitally controlled impedance provides on-chip terminations

• Block RAM provides data storage 
– 18-Kbit dual-port blocks

• Multiplier blocks (accepts two 18-bit binary numbers)

• Digital Clock Manager (DCM)
– Provides distribution, delaying, mult, div, phase shift of clocks
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Slices and CLBs (Xilinx)

• Each Virtex-II CLB 

contains 

four slices

– Local routing provides 

feedback between slices in the 

same CLB, and it provides 

routing to 

neighboring CLBs

– A switch matrix provides 

access 

to general routing resources

CIN

Switch

Matrix

BUFT
BUF T

COUTCOUT

Slice S0

Slice S1

Local Routing

Slice S2

Slice S3

CIN

SHIFT
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Slice 0

LUT Carry

LUT Carry D Q

CE

PRE

CLR

D
QCE

PRE

CLR

Simplified Slice Structure (Xilinx)

• Each slice has four outputs

– Two registered outputs,                                

two non-registered outputs

– Two BUFTs associated 

with each CLB, accessible 

by all 16 CLB outputs

• Carry logic runs vertically, 

up only

– Two independent                                       

carry chains per CLB
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Detailed Slice Structure (Xilinx)

• The next slides will 

discuss the slice 

features

– LUTs

– MUXF5, MUXF6, 

MUXF7, MUXF8 

(only the F5 and 

F6 MUX are shown 

in the diagram)

– Carry Logic

– MULT_ANDs

– Sequential Elements
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Combinatorial Logic

A
B

C
D

Z

Look-Up Tables (Xilinx)

• Combinatorial logic is stored in Look-Up Tables (LUTs) 

– Also called Function Generators (FGs)

– Capacity is limited by number of inputs, not complexity

• Delay through the LUT is constant

11111

00111

01011

00011

...

11010

10010

11100

00100

01000

00000

ZDCBA
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Flexible Sequential Elements (Xilinx) 

• Can be flip-flops or latches

• Two in each slice; eight in each 

CLB

• Inputs can come from LUTs or 

from an independent CLB 

input

• Separate set and reset controls

– Can be synchronous or 

asynchronous

• All controls are shared within a 

slice

– Control signals can be inverted 

locally within a slice

D

CE

PRE

CLR

Q

FDCPE

D

CE

S

R

Q

FDRSE

D

CE

PRE

CLR

Q

LDCPE

G

_1
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IOB Element (Xilinx)

• Input path

– Two DDR registers

• Output path

– Two DDR registers

– Two 3-state enable 

DDR registers

• Separate clocks and 

clock enables for I and O

• Set and reset signals 

are shared

Reg

Reg

DDR MUX

3-state

OCK1

OCK2

Reg

Reg

DDR MUX

Output

OCK1

OCK2

PAD

Reg

Reg

Input

ICK1

ICK2

IOB
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SelectIO Standard (Xilinx)

• Allows direct connections to external signals of varied 
voltages and thresholds
– Optimizes the speed/noise tradeoff

– Saves having to place interface components onto your board

• Differential signaling standards
– LVDS, BLVDS, ULVDS

– LDT

– LVPECL

• Single-ended I/O standards
– LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)

– PCI-X at 133 MHz, PCI (3.3V at 33 MHz and 66 MHz)

– GTL, GTLP

– and more!
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Digital Controlled Impedance (DCI)

• DCI provides

– Output drivers that match the impedance of the traces

– On-chip termination for receivers and transmitters

• DCI advantages

– Improves signal integrity by eliminating stub reflections

– Reduces board routing complexity and component count by 

eliminating external resistors

– Internal feedback circuit eliminates the effects of temperature,

voltage, and process variations
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Block SelectRAM Resources (Xilinx)

• Up to 3.5 Mb of RAM in 18-

kb blocks

– Synchronous read and write

• True dual-port memory

– Each port has synchronous read 

and write capability

– Different clocks for each port 

• Supports initial values

• Synchronous reset on output 

latches

• Supports parity bits

– One parity bit per eight data 

bits
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Dedicated Multiplier Blocks (Xilinx)

• 18-bit twos complement signed operation

• Optimized to implement multiply and accumulate 

functions

• Multipliers are physically located next to block 

SelectRAM™ memory

18 x 18
Multiplier

Output 
(36 bits)

Data_A 
(18 bits)

Data_B 
(18 bits)

18 x 18 signed

12 x 12 signed

8 x 8 signed

4 x 4 signed
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Spartan-3 Starter Board
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Nexys 2 Board ($99)
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Logic Synthesis

• A process which takes a digital circuit description and 

translates it into a gate level design, optimized for a 

particular implementation technology.
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Xilinx Design Process (Xilinx)

• Step1: Design

– Two design entry methods: HDL(Verilog or 

VHDL) or schematic drawings

• Step 2: Synthesize to create Netlist

– Translates V, VHD, SCH files into an industry 

standard format EDIF file

• Step 3: Implement design (netlist)

– Translate, Map, Place & Route

• Step 4: Configure FPGA

– Download BIT file into FPGA 

HDL code Schematic

Netlist

Implement

Synthesize

BIT File

Synthesis
CONSTRAINTS

Implementation
CONSTRAINTS
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Translate

Map

Place & Route

Xilinx Design Flow (Xilinx)

Plan & Budget HDL RTL
Simulation

Synthesize

to create netlist

Functional

Simulation

Create 

Bit File

Attain Timing 

Closure
Timing

Simulation

Implement

Create Code/
Schematic
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Program the FPGA (Xilinx)

• There are three ways to 

program an FPGA

– Through a PROM device

• You will need to generate a 

file that the PROM 

programmer will understand

– Directly from the computer

• Use the iMPACT

configuration tool

• (need JTAG)

– Use USB connector

• Digilent Adept tool 
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Decoder Tutorial Demo Example

sel0

sel1

y0

y1

y2

y3

y4

y5

y6

y7

sel2
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VHDL Source Code
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Synthesizing the Design

=========================================================================

*                           HDL Synthesis                       *

=========================================================================

Synthesizing Unit <decoder>.

Related source file is "C:/ee574/nexsys2/decoder/decoder.vhd".

Found 1-of-8 decoder for signal <y>.

Summary:

inferred   1 Decoder(s).

Unit <decoder> synthesized.
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View the Schematic Representation
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Decoder Implemented on FPGA
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Zooming in on Logic Slice
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Assigning Package Pins
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New Implementation to Match Target
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Verilog Background

• 1983: Gateway Design Automation released Verilog HDL 

“Verilog” and simulator

• 1985: Verilog enhanced version – “Verilog-XL”

• 1987: Verilog-XL becoming more popular (same year 

VHDL released as IEEE standard)

• 1989: Cadence bought Gateway

• 1995: Verilog adopted by IEEE as standard 1364 

– Verilog HDL, Verilog 1995

• 2001: First major revision (cleanup and enhancements)

– Standard 1364-2001 (or Verilog 2001)

• System Verilog under development
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Create Verilog Module
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Module Created

• No separate entity and arch –

just module

• Ports can be input, output, or 

inout

• Note: Verilog 2001 has 

alternative port style:
– (input a, b, sel, output y);
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Add Assign Statement

• Similar to VHDL conditional signal assignment – continuous assignment

• Exactly same hardware produced
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Verilog - General Comments

• VHDL is like ADA and Pascal in style
• Strongly typed – more robust

• Verilog is more like the ‘C’ language

• Verilog is case sensitive

• White space is OK (tabs, new lines, etc)

• Statements terminated with semicolon (;)

• Verilog statements between
• module and endmodule

• Comments // single line and /* and */
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Verilog Logic

• Four-value logic system

• 0 – logic zero, or false condition

• 1 – logic 1, or true condition

• x, X – unknown logic value

• z, Z - high-impedance state

• Number formats

• b, B binary

• d, D decimal (default)

• h, H hexadecimal

• o, O octal

• 16’H789A – 16-bit number in hex format

• 1’b0 – 1-bit 
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Verilog and VHDL – Reminder

• VHDL - like Pascal and Ada programming languages

• Verilog - more like ‘C’ programming language

• But remember they are Hardware Description Languages -

They are NOT programming languages

– FPGAs do NOT contain an hidden microprocessor or interpreter or 

memory that executes the VHDL or Verilog code

– Synthesis tools prepare a hardware design that is inferred from the 

behavior described by the HDL

– A bit stream is transferred to the programmable device to configure 

the device

– No shortcuts! Need to understand combinational/sequential logic

• Uses subset of language for synthesis

• Check - could you design circuit from description?


