
Jim Duckworth, WPI ECE 574 - Module 11

VHDL and Verilog – Module 1

Introduction

Jim Duckworth

ECE Department, WPI

Jim Duckworth, WPI ECE 574 - Module 12

Topics

• Background to VHDL

• Introduction to language

• Programmable Logic Devices

– CPLDs and FPGAs

– FPGA architecture

– Spartan 3 Starter Board and Nexys 2 Board

• Using VHDL to synthesize and implement a design

• Verilog overview

Jim Duckworth, WPI ECE 574 - Module 13

Hardware Description Languages

• Example HDL's : ABEL, VERILOG, VHDL

• Advantages:

– Documentation

– Flexibility (easier to make design changes or mods)

– Portability (if HDL is standard)

– One language for modeling, simulation (test benches), and

synthesis

– Let synthesis worry about gate generation

• Engineer productivity

• However: A different way of approaching design

– engineers are used to thinking and designing using graphics

(schematics) instead of text.

Jim Duckworth, WPI ECE 574 - Module 14

VHDL

• VHSIC Hardware Description Language
– Very High Speed Integrated Circuit

• Standard language used to describe digital hardware
devices, systems and components
– Developed initially for documentation

• VHDL program was an offshoot of the US Government's
VHSIC Program

• Approved as an IEEE Standard in December 1987 (IEEE
standard 1076-1987)
– Revised - now 1076-1993 (supported by all tools)

– Work under way on VHDL-200X

• Integration of 1164 std

• General improvements, etc

Jim Duckworth, WPI ECE 574 - Module 15

VHDL References

• IEEE Standard VHDL Language Reference Manual (1076

– 1993) (1076-2002)

• “RTL Hardware Design using VHDL – Coding for

Efficiency, Portability, and Scalability” by Pong P. Chu,

Wiley-InterScience, 2006

• “Introductory VHDL From Simulation to Synthesis by

Sudhakar Yalamanchilli, 2002, Xilinx Design Series,

Prentice Hall

• “VHDL Made Easy” by David Pellerin and Douglas

Taylor, 1997, Prentice Hall

Jim Duckworth, WPI ECE 574 - Module 16

What exactly is VHDL ?

• A way of describing the operation of a system.

– Example: a 2-input multiplexer

ENTITY mux IS

PORT (a, b, sel : IN std_logic;

y : OUT std_logic);

END mux;

ARCHITECTURE behavior OF mux IS

BEGIN

y <= a WHEN sel = ‘0’ ELSE

b;

END behavior;

Jim Duckworth, WPI ECE 574 - Module 17

Example Synthesis Results (not Xilinx)

Jim Duckworth, WPI ECE 574 - Module 18

• Note: VHDL is case insensitive, free format.

• Semicolon (;) terminates statement

• Comments are preceded by two consecutive dashes.

– comment ends at end of current line

• A digital component is described using an

– ENTITY DECLARATION and a corresponding

– ARCHITECTURE BODY.

• Std_logic is an enumeration type defined in an IEEE

package

– has the values '0' and ‘1’ and ‘Z’ (and others)

• Ports are like IC pins, connected by wires called SIGNALS

Basic Terminology

Jim Duckworth, WPI ECE 574 - Module 19

IEEE STANDARD 1164

• Provides a standard data type (std_logic) - nine values

– U unitialized

– X forcing unknown

– 0 forcing logic 0

– 1 forcing logic 1

– Z high impedance

– W weak unknown

– L weak logic 0

– H weak logic 1

– - don’t care

• To use standard logic data types place at top of source file

– LIBRARY ieee; -- library

– USE ieee.std_logic_1164.ALL; -- package

Jim Duckworth, WPI ECE 574 - Module 110

Entity

• The ENTITY defines the external view of the
component

• PORTS are the communication links between
entities or connections to the device pins

• Note the use of libraries before entity description

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY mux IS

PORT (a, b, sel : IN std_logic;

y : OUT std_logic);

END mux;

Jim Duckworth, WPI ECE 574 - Module 111

Architecture

• The ARCHITECTURE defines the function or behavior or

structure of the ENTITY

• Consists of concurrent statements, e.g.

– Process statements

– Concurrent Signal Assignment statements

– Conditional Signal Assignment statements

• An entity may have several architectures

ARCHITECTURE behavior OF mux IS

BEGIN

y <= a WHEN sel = ‘0’ ELSE

b;

END behavior;

Jim Duckworth, WPI ECE 574 - Module 112

VHDL Notes

• There is no explicit reference to actual hardware

components

– There are no D-type flip-flops, mux, etc

– Required logic is inferred from the VHDL description

– Same VHDL can target many different devices

• There are many alternative ways to describe the required

behavior of the final system

– Exactly the same hardware will be produced

– Some ways are more intuitive and easier to read

• Remember that the synthesis tools must be able to deduce

your intent and system requirements

– For sequential circuits it is usually necessary to follow

recommended templates and style

Jim Duckworth, WPI ECE 574 - Module 113

Programmable Logic Devices

• Xilinx user programmable devices

– FPGAs – Field Programmable Gate Array

• Virtex 4, Virtex 5, Virtex 6, and Virtex 7

• Spartan 3, Spartan 6

• Consist of configurable logic blocks

– Provides look-up tables to implement logic

– Storage devices to implement flip-flops and latches

– CPLDs – Complex Programmable Logic Devices

• CoolRunner-II CPLDS (1.8 and 3.3 volt devices)

• XC9500 Series (3.3 and 5 volt devices)

• Consist of macrocells that contain programmable and-or matrix with

flip-flops

• Altera has a similar range of devices

Jim Duckworth, WPI ECE 574 - Module 114

Electronic Components (Xilinx)

Source: Dataquest
Logic

Standard
Logic

ASIC

Programmable
Logic Devices

(PLDs)

Gate
Arrays

Cell-Based
ICs

Full Custom
ICs

CPLDs
SPLDs
(PALs) FPGAs

Acronyms

SPLD = Simple Prog. Logic Device

PAL = Prog. Array of Logic

CPLD = Complex PLD

FPGA = Field Prog. Gate Array

Common Resources
Configurable Logic Blocks (CLB)

– Memory Look-Up Table

– AND-OR planes

– Simple gates

Input / Output Blocks (IOB)
– Bidirectional, latches, inverters, pullup/pulldowns

Interconnect or Routing
– Local, internal feedback, and global

Jim Duckworth, WPI ECE 574 - Module 115

Xilinx Products (Xilinx)

CPLDs and FPGAs

Architecture PAL/22V10-like Gate array-like

More Combinational More Registers + RAM

Density Low-to-medium Medium-to-high
0.5-10K logic gates 1K to 3.2M system gates

Performance Predictable timing Application dependent

Up to 250 MHz today Up to 200 MHz today

Interconnect “Crossbar Switch” Incremental

Complex Programmable Logic

Device (CPLD)

Field-Programmable Gate Array

(FPGA)

Jim Duckworth, WPI ECE 574 - Module 116

Overview of Xilinx FPGA Architecture (Xilinx)

Programmable
Interconnect

I/O Blocks (IOBs)

Configurable
Logic Blocks (CLBs)

Tristate
Buffers

Global
Resources

Jim Duckworth, WPI ECE 574 - Module 117

Spartan-3 FPGA Family

• “Designed to meet the needs of high-volume, cost-

sensitive consumer electronic applications”

• 326 MHz system clock rate

• Programmed by loading configuration data into static

memory cells – place serial PROM on board

55,296

15,360

3,840

CLB

flip-flops

$1007121,728K6,9124MXC3S4000

$12391432K1,9201MXC3S1000

$2.95173216K480200KXC3S200

Price

(250K)

User

IO

Block

Ram (bits)

CLBs

(4 slices)

System

Gates

Device

Jim Duckworth, WPI ECE 574 - Module 118

Spartan-3E FPGA Family

• Also “specifically designed to meet the needs of high volume, cost-

sensitive consumer electronic applications.

• builds on the success of the earlier Spartan-3 family by increasing the

amount of logic per I/O, significantly reducing the cost per logic cell.

New features improve system performance.

• Because of their exceptionally low cost, are ideally suited to a wide

range of consumer electronics applications, including broadband access,

home networking, display/projection, and digital television equipment”.

29,504

9,312

1,920

CLB

flip-flops

<$9376648K3,6881.6MXC3S1600E

$30 1-off232360K1,164500KXC3S500E

<$210872K240100KXC3S100E

Price

(250K)

User

IO

Block

Ram (bits)

CLBs

(4 slices)

System

Gates

Device

Jim Duckworth, WPI ECE 574 - Module 119

Programmable Functional Elements

• Configurable Logic Blocks (CLBs)
– RAM-based look-up tables to implement logic

– Storage elements for flip-flops or latches

• Input/Output Blocks
– Supports bidirectional data flow and 3-state operation

– Supports different signal standards including LVDS

– Double-data rate registers included

– Digitally controlled impedance provides on-chip terminations

• Block RAM provides data storage
– 18-Kbit dual-port blocks

• Multiplier blocks (accepts two 18-bit binary numbers)

• Digital Clock Manager (DCM)
– Provides distribution, delaying, mult, div, phase shift of clocks

Jim Duckworth, WPI ECE 574 - Module 120

Slices and CLBs (Xilinx)

• Each Virtex-II CLB

contains

four slices

– Local routing provides

feedback between slices in the

same CLB, and it provides

routing to

neighboring CLBs

– A switch matrix provides

access

to general routing resources

CIN

Switch

Matrix

BUFT
BUF T

COUTCOUT

Slice S0

Slice S1

Local Routing

Slice S2

Slice S3

CIN

SHIFT

Jim Duckworth, WPI ECE 574 - Module 121

Slice 0

LUT Carry

LUT Carry D Q

CE

PRE

CLR

D
QCE

PRE

CLR

Simplified Slice Structure (Xilinx)

• Each slice has four outputs

– Two registered outputs,

two non-registered outputs

– Two BUFTs associated

with each CLB, accessible

by all 16 CLB outputs

• Carry logic runs vertically,

up only

– Two independent

carry chains per CLB

Jim Duckworth, WPI ECE 574 - Module 122

Detailed Slice Structure (Xilinx)

• The next slides will

discuss the slice

features

– LUTs

– MUXF5, MUXF6,

MUXF7, MUXF8

(only the F5 and

F6 MUX are shown

in the diagram)

– Carry Logic

– MULT_ANDs

– Sequential Elements

Jim Duckworth, WPI ECE 574 - Module 123

Combinatorial Logic

A
B

C
D

Z

Look-Up Tables (Xilinx)

• Combinatorial logic is stored in Look-Up Tables (LUTs)

– Also called Function Generators (FGs)

– Capacity is limited by number of inputs, not complexity

• Delay through the LUT is constant

11111

00111

01011

00011

...

11010

10010

11100

00100

01000

00000

ZDCBA

Jim Duckworth, WPI ECE 574 - Module 124

Flexible Sequential Elements (Xilinx)

• Can be flip-flops or latches

• Two in each slice; eight in each

CLB

• Inputs can come from LUTs or

from an independent CLB

input

• Separate set and reset controls

– Can be synchronous or

asynchronous

• All controls are shared within a

slice

– Control signals can be inverted

locally within a slice

D

CE

PRE

CLR

Q

FDCPE

D

CE

S

R

Q

FDRSE

D

CE

PRE

CLR

Q

LDCPE

G

_1

Jim Duckworth, WPI ECE 574 - Module 125

IOB Element (Xilinx)

• Input path

– Two DDR registers

• Output path

– Two DDR registers

– Two 3-state enable

DDR registers

• Separate clocks and

clock enables for I and O

• Set and reset signals

are shared

Reg

Reg

DDR MUX

3-state

OCK1

OCK2

Reg

Reg

DDR MUX

Output

OCK1

OCK2

PAD

Reg

Reg

Input

ICK1

ICK2

IOB

Jim Duckworth, WPI ECE 574 - Module 126

SelectIO Standard (Xilinx)

• Allows direct connections to external signals of varied
voltages and thresholds
– Optimizes the speed/noise tradeoff

– Saves having to place interface components onto your board

• Differential signaling standards
– LVDS, BLVDS, ULVDS

– LDT

– LVPECL

• Single-ended I/O standards
– LVTTL, LVCMOS (3.3V, 2.5V, 1.8V, and 1.5V)

– PCI-X at 133 MHz, PCI (3.3V at 33 MHz and 66 MHz)

– GTL, GTLP

– and more!

Jim Duckworth, WPI ECE 574 - Module 127

Digital Controlled Impedance (DCI)

• DCI provides

– Output drivers that match the impedance of the traces

– On-chip termination for receivers and transmitters

• DCI advantages

– Improves signal integrity by eliminating stub reflections

– Reduces board routing complexity and component count by

eliminating external resistors

– Internal feedback circuit eliminates the effects of temperature,

voltage, and process variations

Jim Duckworth, WPI ECE 574 - Module 128

Block SelectRAM Resources (Xilinx)

• Up to 3.5 Mb of RAM in 18-

kb blocks

– Synchronous read and write

• True dual-port memory

– Each port has synchronous read

and write capability

– Different clocks for each port

• Supports initial values

• Synchronous reset on output

latches

• Supports parity bits

– One parity bit per eight data

bits

Jim Duckworth, WPI ECE 574 - Module 129

Dedicated Multiplier Blocks (Xilinx)

• 18-bit twos complement signed operation

• Optimized to implement multiply and accumulate

functions

• Multipliers are physically located next to block

SelectRAM™ memory

18 x 18
Multiplier

Output
(36 bits)

Data_A
(18 bits)

Data_B
(18 bits)

18 x 18 signed

12 x 12 signed

8 x 8 signed

4 x 4 signed

Jim Duckworth, WPI ECE 574 - Module 130

Spartan-3 Starter Board

Jim Duckworth, WPI ECE 574 - Module 131

Nexys 2 Board ($99)

Jim Duckworth, WPI ECE 574 - Module 132

Logic Synthesis

• A process which takes a digital circuit description and

translates it into a gate level design, optimized for a

particular implementation technology.

Jim Duckworth, WPI ECE 574 - Module 133

Xilinx Design Process (Xilinx)

• Step1: Design

– Two design entry methods: HDL(Verilog or

VHDL) or schematic drawings

• Step 2: Synthesize to create Netlist

– Translates V, VHD, SCH files into an industry

standard format EDIF file

• Step 3: Implement design (netlist)

– Translate, Map, Place & Route

• Step 4: Configure FPGA

– Download BIT file into FPGA

HDL code Schematic

Netlist

Implement

Synthesize

BIT File

Synthesis
CONSTRAINTS

Implementation
CONSTRAINTS

Jim Duckworth, WPI ECE 574 - Module 134

Translate

Map

Place & Route

Xilinx Design Flow (Xilinx)

Plan & Budget HDL RTL
Simulation

Synthesize

to create netlist

Functional

Simulation

Create

Bit File

Attain Timing

Closure
Timing

Simulation

Implement

Create Code/
Schematic

Jim Duckworth, WPI ECE 574 - Module 135

Program the FPGA (Xilinx)

• There are three ways to

program an FPGA

– Through a PROM device

• You will need to generate a

file that the PROM

programmer will understand

– Directly from the computer

• Use the iMPACT

configuration tool

• (need JTAG)

– Use USB connector

• Digilent Adept tool

Jim Duckworth, WPI ECE 574 - Module 136

Decoder Tutorial Demo Example

sel0

sel1

y0

y1

y2

y3

y4

y5

y6

y7

sel2

Jim Duckworth, WPI ECE 574 - Module 137

VHDL Source Code

Jim Duckworth, WPI ECE 574 - Module 138

Synthesizing the Design

===

* HDL Synthesis *

===

Synthesizing Unit <decoder>.

Related source file is "C:/ee574/nexsys2/decoder/decoder.vhd".

Found 1-of-8 decoder for signal <y>.

Summary:

inferred 1 Decoder(s).

Unit <decoder> synthesized.

Jim Duckworth, WPI ECE 574 - Module 139

View the Schematic Representation

Jim Duckworth, WPI ECE 574 - Module 140

Decoder Implemented on FPGA

Jim Duckworth, WPI ECE 574 - Module 141

Zooming in on Logic Slice

Jim Duckworth, WPI ECE 574 - Module 142

Assigning Package Pins

Jim Duckworth, WPI ECE 574 - Module 143

New Implementation to Match Target

Jim Duckworth, WPI ECE 574 - Module 144

Verilog Background

• 1983: Gateway Design Automation released Verilog HDL

“Verilog” and simulator

• 1985: Verilog enhanced version – “Verilog-XL”

• 1987: Verilog-XL becoming more popular (same year

VHDL released as IEEE standard)

• 1989: Cadence bought Gateway

• 1995: Verilog adopted by IEEE as standard 1364

– Verilog HDL, Verilog 1995

• 2001: First major revision (cleanup and enhancements)

– Standard 1364-2001 (or Verilog 2001)

• System Verilog under development

Jim Duckworth, WPI ECE 574 - Module 145

Create Verilog Module

Jim Duckworth, WPI ECE 574 - Module 146

Module Created

• No separate entity and arch –

just module

• Ports can be input, output, or

inout

• Note: Verilog 2001 has

alternative port style:
– (input a, b, sel, output y);

Jim Duckworth, WPI ECE 574 - Module 147

Add Assign Statement

• Similar to VHDL conditional signal assignment – continuous assignment

• Exactly same hardware produced

Jim Duckworth, WPI ECE 574 - Module 148

Verilog - General Comments

• VHDL is like ADA and Pascal in style
• Strongly typed – more robust

• Verilog is more like the ‘C’ language

• Verilog is case sensitive

• White space is OK (tabs, new lines, etc)

• Statements terminated with semicolon (;)

• Verilog statements between
• module and endmodule

• Comments // single line and /* and */

Jim Duckworth, WPI ECE 574 - Module 149

Verilog Logic

• Four-value logic system

• 0 – logic zero, or false condition

• 1 – logic 1, or true condition

• x, X – unknown logic value

• z, Z - high-impedance state

• Number formats

• b, B binary

• d, D decimal (default)

• h, H hexadecimal

• o, O octal

• 16’H789A – 16-bit number in hex format

• 1’b0 – 1-bit

Jim Duckworth, WPI ECE 574 - Module 150

Verilog and VHDL – Reminder

• VHDL - like Pascal and Ada programming languages

• Verilog - more like ‘C’ programming language

• But remember they are Hardware Description Languages -

They are NOT programming languages

– FPGAs do NOT contain an hidden microprocessor or interpreter or

memory that executes the VHDL or Verilog code

– Synthesis tools prepare a hardware design that is inferred from the

behavior described by the HDL

– A bit stream is transferred to the programmable device to configure

the device

– No shortcuts! Need to understand combinational/sequential logic

• Uses subset of language for synthesis

• Check - could you design circuit from description?

