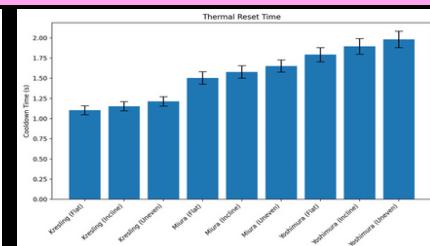
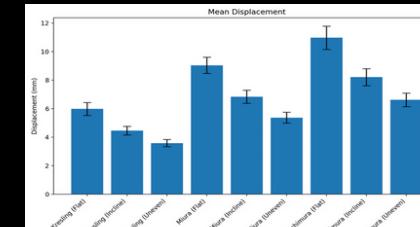


Creating an Origami-Based Soft Robot for use in High Stress Environments



Rishi Gandhi, Shrewsbury

Research Question: How can origami-based folding patterns be used to design a soft robot that adapts its locomotion to uneven terrain?

Objective: Design, build, and test an origami-inspired soft robotic platform that converts controlled actuation into directional motion using geometric deformation.

Analysis: Comparison of different fold geometries

Average displacement, energy efficiency, and thermal recovery of three tessellations over 500 simulations and three different terrain types.

A difference in origami geometry results in a change in a lightweight soft robot's energy efficiency, displacement per cycle, and speed.

SIMULATION

Emulate displacement, energy efficiency, and thermal behaviour

Integrate SMA wires to create modules with tuneable stiffness and motion profiles.

SMA INTEGRATION

PHYSICAL PROTOTYPE

Fabricate prototype segments using heat-resistant materials and embed SMA wires.

Measure displacement, energy consumption, and thermal cooldown

TESTING

ANALYSIS

Determine tessellation with the best locomotion, motion, and thermal recovery.

Interpretation

- ANOVA showed significant differences in displacement between tessellations ($p < 0.001$), with Miura producing the greatest average displacement.
- Energy efficiency (J/mm) also differed significantly across designs ($p < 0.001$), with Kresling showing the lowest energy cost per millimeter.
- Cooldown time varied by geometry ($p < 0.001$), with Yoshimura cooling fastest.

Real-world Applications

Applications in search and rescue, medicine delivery, underwater welding, machinery maintenance, and other high-stress environments