
; NES Side-Scrolling Shooter Game

; Assemble with ca65/ld65

.segment "HEADER"

 .byte "NES", $1A ; iNES header identifier

 .byte 2 ; 2x 16KB PRG-ROM

 .byte 1 ; 1x 8KB CHR-ROM

 .byte $01 ; mapper 0, vertical mirroring

 .byte $00 ; mapper 0

 .byte $00 ; No PRG-RAM

 .byte $00 ; NTSC

 .byte $00

 .byte $00, $00, $00, $00, $00

.segment "ZEROPAGE"

player_x: .res 1

player_y: .res 1

bullets: .res 16 ; 8 bullets * 2 bytes (x,y)

enemies: .res 16 ; 8 enemies * 2 bytes (x,y)

scroll_x: .res 1

score: .res 2

frame_cnt: .res 1

enemy_timer: .res 1

btn_state: .res 1

lives: .res 1

invuln_timer: .res 1 ; Invulnerability frames after hit

temp1: .res 1 ; Temp storage for collision detection

temp2: .res 1

temp3: .res 1

temp4: .res 1

.segment "CODE"

.proc RESET

 SEI ; disable IRQs

 CLD ; disable decimal mode

 LDX #$40

 STX $4017 ; disable APU frame IRQ

 LDX #$FF

 TXS ; Set up stack

 INX ; now X = 0

 STX $2000 ; disable NMI

 STX $2001 ; disable rendering

 STX $4010 ; disable DMC IRQs

vblankwait1:

 BIT $2002

 BPL vblankwait1

clrmem:

 LDA #$00

 STA $0000, x

 STA $0100, x

 STA $0300, x

 STA $0400, x

 STA $0500, x

 STA $0600, x

 STA $0700, x

 LDA #$FE

 STA $0200, x

 INX

 BNE clrmem

vblankwait2:

 BIT $2002

 BPL vblankwait2

 ; Initialize variables

 LDA #$80

 STA player_x

 LDA #$70

 STA player_y

 LDA #$00

 STA scroll_x

 STA frame_cnt

 STA enemy_timer

 STA invuln_timer

 LDA #$03 ; Start with 3 lives

 STA lives

 ; Initialize bullets offscreen

 LDX #$00

init_bullets:

 LDA #$FF

 STA bullets, x

 INX

 CPX #$10

 BNE init_bullets

 ; Initialize enemies offscreen

 LDX #$00

init_enemies:

 LDA #$FF

 STA enemies, x

 INX

 CPX #$10

 BNE init_enemies

 ; Load palette

 LDA $2002

 LDA #$3F

 STA $2006

 LDA #$00

 STA $2006

 LDX #$00

LoadPalettes:

 LDA palette, x

 STA $2007

 INX

 CPX #$20

 BNE LoadPalettes

 ; Enable NMI and sprites

 LDA #%10000000

 STA $2000

 LDA #%00011110

 STA $2001

; Main game loop

GameLoop:

 ; Wait for NMI

 LDA frame_cnt

@wait:

 CMP frame_cnt

 BEQ @wait

 ; Check if game over

 LDA lives

 BNE @continue

 JMP GameOver

@continue:

 ; Decrease invulnerability timer

 LDA invuln_timer

 BEQ @no_invuln

 DEC invuln_timer

@no_invuln:

 ; Read controller

 JSR ReadController

 ; Update player

 JSR UpdatePlayer

 ; Update bullets

 JSR UpdateBullets

 ; Update enemies

 JSR UpdateEnemies

 ; Check collisions

 JSR CheckCollisions

 ; Draw lives

 JSR DrawLives

 ; Update scroll

 INC scroll_x

 JMP GameLoop

.endproc

; Game Over state

.proc GameOver

 ; Flash the screen or wait

 LDA frame_cnt

@wait:

 CMP frame_cnt

 BEQ @wait

 JMP GameOver

.endproc

; NMI - runs once per frame

.proc NMI

 PHA

 TXA

 PHA

 TYA

 PHA

 ; Sprite DMA

 LDA #$00

 STA $2003

 LDA #$02

 STA $4014

 ; Update scroll

 LDA #$00

 STA $2006

 STA $2006

 LDA scroll_x

 STA $2005

 LDA #$00

 STA $2005

 INC frame_cnt

 PLA

 TAY

 PLA

 TAX

 PLA

 RTI

.endproc

.proc ReadController

 LDA #$01

 STA $4016

 LDA #$00

 STA $4016

 LDA $4016 ; A

 AND #$01

 BEQ @skip_fire

 JSR FireBullet

@skip_fire:

 LDA $4016 ; B

 LDA $4016 ; Select

 LDA $4016 ; Start

 LDA $4016 ; Up

 AND #$01

 BEQ @skip_up

 LDA player_y

 CMP #$10

 BCC @skip_up

 DEC player_y

@skip_up:

 LDA $4016 ; Down

 AND #$01

 BEQ @skip_down

 LDA player_y

 CMP #$D0

 BCS @skip_down

 INC player_y

@skip_down:

 LDA $4016 ; Left

 AND #$01

 BEQ @skip_left

 LDA player_x

 CMP #$08

 BCC @skip_left

 DEC player_x

@skip_left:

 LDA $4016 ; Right

 AND #$01

 BEQ @skip_right

 LDA player_x

 CMP #$E8

 BCS @skip_right

 INC player_x

@skip_right:

 RTS

.endproc

.proc UpdatePlayer

 ; Check if invulnerable (flicker sprite)

 LDA invuln_timer

 BEQ @draw_normal

 AND #$04

 BEQ @hide_sprite

@draw_normal:

 ; Draw player sprite at OAM offset $00 (sprite 0)

 LDA player_y

 STA $0200

 LDA #$00 ; Tile

 STA $0201

 LDA #$00 ; Attributes

 STA $0202

 LDA player_x

 STA $0203

 RTS

@hide_sprite:

 ; Hide sprite during invulnerability flicker

 LDA #$FF

 STA $0200

 RTS

.endproc

.proc FireBullet

 ; Find free bullet slot

 LDX #$00

@find_slot:

 LDA bullets, x

 CMP #$FF

 BEQ @found_slot

 INX

 INX

 CPX #$10

 BNE @find_slot

 RTS ; No free slots

@found_slot:

 LDA player_x

 CLC

 ADC #$08

 STA bullets, x

 INX

 LDA player_y

 STA bullets, x

 RTS

.endproc

.proc UpdateBullets

 LDX #$00

@loop:

 LDA bullets, x

 CMP #$FF

 BEQ @next

 ; Move bullet right

 CLC

 ADC #$03 ; Move 3 pixels per frame (faster bullets)

 STA bullets, x

 ; Check if off-screen right

 CMP #$F0

 BCC @draw

 LDA #$FF

 STA bullets, x

 INX

 LDA #$FF

 STA bullets, x

 DEX

 JMP @next

@draw:

 ; Draw bullet sprite

 ; X = 0,2,4,6,8,10,12,14

 ; Sprite slots 1-8: offsets $04,$08,$0C,$10,$14,$18,$1C,$20

 TXA

 PHA ; Save X

 LSR ; Divide by 2: 0,1,2,3,4,5,6,7

 CLC

 ADC #$01 ; Add 1 to get sprite number 1-8

 ASL

 ASL ; Multiply by 4 for byte offset

 TAY ; Y = $04,$08,$0C,$10,$14,$18,$1C,$20

 PLA

 TAX ; Restore X

 INX

 LDA bullets, x ; Get Y position

 STA $0200, y

 DEX

 INY

 LDA #$01 ; Tile

 STA $0200, y

 INY

 LDA #$01 ; Attributes

 STA $0200, y

 INY

 LDA bullets, x ; Get X position

 STA $0200, y

@next:

 INX

 INX

 CPX #$10

 BNE @loop

 RTS

.endproc

.proc UpdateEnemies

 ; Spawn enemies

 INC enemy_timer

 LDA enemy_timer

 CMP #$50 ; Spawn every ~80 frames

 BCC @no_spawn

 LDA #$00

 STA enemy_timer

 JSR SpawnEnemy

@no_spawn:

 ; Update enemy positions

 LDX #$00

@loop:

 LDA enemies, x

 CMP #$FF

 BEQ @next_enemy ; Skip inactive enemies

 ; Move enemy left

 SEC

 SBC #$02 ; Move 2 pixels left per frame

 STA enemies, x

 ; Check if off-screen

 CMP #$04

 BCS @draw_this_enemy

 ; Remove off-screen enemy

 LDA #$FF

 STA enemies, x

 INX

 STA enemies, x

 DEX

 JMP @next_enemy ; Don't draw, just move to next

@draw_this_enemy:

 ; Draw enemy sprite

 TXA

 PHA ; Save X

 LSR ; Divide by 2

 CLC

 ADC #$09 ; Sprite number 9-16

 ASL

 ASL ; Multiply by 4

 TAY

 PLA

 TAX ; Restore X

 ; Y position

 INX

 LDA enemies, x

 STA $0200, y

 DEX

 ; Tile

 INY

 LDA #$02

 STA $0200, y

 ; Attributes

 INY

 LDA #$02

 STA $0200, y

 ; X position

 INY

 LDA enemies, x

 STA $0200, y

@next_enemy:

 INX

 INX

 CPX #$10

 BNE @loop

 RTS

.endproc

.proc SpawnEnemy

 ; Find free enemy slot

 LDX #$00

@find_slot:

 LDA enemies, x

 CMP #$FF

 BEQ @found_slot

 INX

 INX

 CPX #$10

 BNE @find_slot

 RTS

@found_slot:

 ; Spawn at right side of screen

 LDA #$E8 ; X position (232 - visible on screen)

 STA enemies, x

 INX

 ; Random Y position

 LDA frame_cnt

 AND #$7F

 CLC

 ADC #$20

 CMP #$C0 ; Keep within reasonable bounds

 BCC @y_ok

 LDA #$80

@y_ok:

 STA enemies, x

 RTS

.endproc

.proc CheckCollisions

 ; Check bullet-enemy collisions

 LDX #$00

@bullet_loop:

 LDA bullets, x

 CMP #$FF

 BEQ @next_bullet

 ; Store bullet X in temp1

 STA temp1

 INX

 LDA bullets, x

 STA temp2 ; Store bullet Y in temp2

 DEX

 LDY #$00

@enemy_loop:

 LDA enemies, y

 CMP #$FF

 BEQ @next_enemy

 ; Store enemy X in temp3

 STA temp3

 INY

 LDA enemies, y

 STA temp4 ; Store enemy Y in temp4

 DEY

 ; Check X collision (within 12 pixels)

 LDA temp1 ; Bullet X

 SEC

 SBC temp3 ; Enemy X

 BCS @x_positive

 ; Negative difference

 EOR #$FF

 CLC

 ADC #$01

@x_positive:

 CMP #$0C

 BCS @next_enemy

 ; Check Y collision (within 12 pixels)

 LDA temp2 ; Bullet Y

 SEC

 SBC temp4 ; Enemy Y

 BCS @y_positive

 ; Negative difference

 EOR #$FF

 CLC

 ADC #$01

@y_positive:

 CMP #$0C

 BCS @next_enemy

 ; Collision detected!

 LDA #$FF

 STA bullets, x

 STA enemies, y

 JMP @next_bullet

@next_enemy:

 INY

 INY

 CPY #$10

 BNE @enemy_loop

@next_bullet:

 INX

 INX

 CPX #$10

 BNE @bullet_loop

 ; Check player-enemy collisions

 LDA invuln_timer

 BNE @skip_player_collision ; Skip if invulnerable

 LDY #$00

@player_enemy_loop:

 LDA enemies, y

 CMP #$FF

 BEQ @next_player_enemy

 ; Store enemy X in temp3

 STA temp3

 INY

 LDA enemies, y

 STA temp4 ; Store enemy Y in temp4

 DEY

 ; Check X collision

 LDA player_x

 SEC

 SBC temp3

 BCS @px_positive

 EOR #$FF

 CLC

 ADC #$01

@px_positive:

 CMP #$10

 BCS @next_player_enemy

 ; Check Y collision

 LDA player_y

 SEC

 SBC temp4

 BCS @py_positive

 EOR #$FF

 CLC

 ADC #$01

@py_positive:

 CMP #$10

 BCS @next_player_enemy

 ; Player hit!

 LDA #$FF

 STA enemies, y

 DEC lives

 LDA #$78 ; 2 seconds of invulnerability (120 frames)

 STA invuln_timer

 JMP @skip_player_collision

@next_player_enemy:

 INY

 INY

 CPY #$10

 BNE @player_enemy_loop

@skip_player_collision:

 RTS

.endproc

.proc DrawLives

 ; Draw life indicators in top-left corner (sprites 17-19, offsets $44-$4F)

 LDX #$00

@loop:

 CPX lives

 BCS @empty_heart

 ; Draw filled heart

 TXA

 ASL

 ASL ; Multiply by 4 (each sprite is 4 bytes)

 CLC

 ADC #$44 ; Start at sprite 17

 TAY

 LDA #$08

 STA $0200, y

 INY

 LDA #$00 ; Player tile as heart

 STA $0200, y

 INY

 LDA #$00

 STA $0200, y

 INY

 TXA

 ASL

 ASL

 ASL

 CLC

 ADC #$08

 STA $0200, y

 JMP @next_life

@empty_heart:

 ; Hide sprite

 TXA

 ASL

 ASL

 CLC

 ADC #$44

 TAY

 LDA #$FF

 STA $0200, y

@next_life:

 INX

 CPX #$03 ; Max 3 lives to display

 BNE @loop

 RTS

.endproc

palette:

 .byte $0F,$00,$10,$30 ; Background palette 0

 .byte $0F,$14,$24,$34 ; Background palette 1

 .byte $0F,$1B,$2B,$3B ; Background palette 2

 .byte $0F,$12,$22,$32 ; Background palette 3

 .byte $0F,$30,$10,$00 ; Sprite palette 0 (player - white)

 .byte $0F,$27,$17,$07 ; Sprite palette 1 (bullets - yellow)

 .byte $0F,$16,$26,$36 ; Sprite palette 2 (enemies - red)

 .byte $0F,$1A,$2A,$3A ; Sprite palette 3

.segment "VECTORS"

 .word NMI

 .word RESET

 .word 0

; CHR ROM

.segment "CHARS"

; Tile $00 - Player ship

 .byte %00011000

 .byte %00111100

 .byte %01111110

 .byte %11111111

 .byte %01111110

 .byte %00111100

 .byte %00011000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

; Tile $01 - Bullet

 .byte %00000000

 .byte %00000000

 .byte %00011000

 .byte %00111100

 .byte %00111100

 .byte %00011000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

; Tile $02 - Enemy

 .byte %01111110

 .byte %11111111

 .byte %11011011

 .byte %11111111

 .byte %01111110

 .byte %00111100

 .byte %00011000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

 .byte %00000000

; Fill rest of CHR with blank tiles

 .res $2000 - 48, $00

