
Centering Humans in the Programming Languages
Classroom: Building a Text for the Next Generation

Rose Bohrer
rbohrer@wpi.edu

Worcester Polytechnic Institute
Worcester, Massachusetts, USA

Abstract
This paper is a companion to the author’s open-access text-
book, "Human-Centered Programming Languages." Beyond
the contributions of the textbook itself, this paper contributes
a set of textbook design principles for overcoming those
limitations and an analysis of students’ stated needs and
preferences drawn from anonymous course report data for
three courses, the last of which was based on notes that
became the basis of the textbook. The textbook is intended
to be multi-purpose, with its primary audiences being un-
dergraduate and master’s-level elective courses on program-
ming languages within computer science, but significant
opportunity for cross-use in disciplines ranging from human-
computer interaction and software engineering to gender
studies and disability studies. The book is intended to be
language-agnostic, but the course in which it will be used
first is Rust-based.

CCS Concepts: • Applied computing → Education; Me-
dia arts; Fine arts; Arts and humanities; • Theory of com-
putation→ Formal languages and automata theory; Type
theory; Program semantics.

Keywords: programming languages education, textbook de-
sign, interdisciplinary curriculum, human-centered comput-
ing

ACM Reference Format:
Rose Bohrer. 2023. Centering Humans in the Programming Lan-
guages Classroom: Building a Text for the Next Generation. In
Proceedings of 2023 ACM SIGPLAN International SPLASH-E Sym-
posium (SPLASH-E). ACM, New York, NY, USA, 12 pages. https:
//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPLASH-E, October 25, 2023, Cascais, Portugal
© 2023 Association for Computing Machinery.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Who takes a course on programming languages (PL)? For
decades, this question has driven the design of PL courses and
the textbooks that support them. This question cannot have
a single correct answer, but every instructor must answer it
to the best of their ability. For the sake of rhetoric, consider
three potential answers:

1. PL courses are taken by students who want to learn
many different languages.

2. PL courses are taken by students who want to prepare
for research in programming language theory.

3. PL courses are taken by students who want to become
programmers who understand their tools.

This paper proposes a radical fourth definition of the au-
dience: PL courses are taken by students who will work in in-
terdisciplinary teams, and who must work across disciplinary
boundaries. These boundaries often lie within computing:
my recent offering of graduate PL was only 25% CS grad stu-
dents, withmany students fromData Science, Computational
Media, and Robotics. At WPI, Human-Computer Interaction
(HCI) is not separated from CS, thus HCI students may be
present as well. Yet doing justice to this breadth requires
looking outside computing to social sciences and humani-
ties as well: Interdisciplinary programs build as heavily on
these disciplines as they do computing. HCI relies heavily
on the social sciences to comprehend the human experience
of computation. Computational Media relies heavily on the
humanities, e.g., media studies, rhetoric, and aesthetics.

If we wish not to triple the workload of a course, this shift
requires radical restructuring of that course. Beloved topics
from PL theory will be dropped to make way for breadth.
In this new approach, the core criterion is literacy: we wish
to prepare students to read work from multiple disciplines.
If we have equipped students for self-study, the removal of
specialized topics becomes more acceptable. To encourage
self-study without overworking students, the course blends
teacher-regulated and student-regulated learning.

This paper lays out the construction of a human-centered
programming languages (HCPL) textbook, structured around
the variety of humans who care about PL, primarily struc-
tured through the variety of disciplines and roles for each
person. This contrasts with the complementary notion of
user-centered programming languages [6, 7, 21, 30, 31]: in

https://orcid.org/0000-0001-5201-9895
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SPLASH-E, October 25, 2023, Cascais, Portugal Rose Bohrer

HCPL, users are but one group of humans who are put into
conversation with others.
The HCPL textbook [3] is an open-access living docu-

ment, released at the same time as this paper. Its prelim-
inary form was ≈50,000 words of course notes for grad
PL in Spring 2023; since then it has grown to ≈100,000
words and is suitable for production use, though it will
continue to evolve. The book is available free-of-charge
at https://bookish.press/hcpl. Related course materials are
openly available at https://github.com/rbohrer/pl-course.
The HCPL approach is fundamentally interdisciplinary.

As a result, this approach also constitutes a reconsideration
of what a PL course can be. PL Education in the past has
made great strides in the development of PL depth courses
and textbooks [17, 28, 35, 36, 38] which provide specialized
technical knowledge. Though those courses will not go away,
HCPL breaks new ground by fundamentally reimagining a
PL course as a breadth course, which succeeds not when
it creates specialists but when it helps students identify
their interests within a range of options and work effec-
tively across differences of interest. This is scholarship of
integration. When HCPL places PL theory, HCI, and critical
theory in the same textbook, it is not innovating in any one
of these topics, but innovating in bringing them together.
The following subsections of the introduction identify

pedagogical needs at the author’s institution, WPI (Section
1.1), identify formal learning objectives (Section 1.2), and
provide a positionality statement (Section 1.3). We highlight
core pedagogical strategies used in the textbook in Section 2,
analyze course report data in Section 3, compare this work
to the history of PL education and related work in Section 4,
discuss how the book might be applied in the classroom in
Section 5, and conclude in Section 6. The course report data
are drawn from three of the author’s courses Introduction
to Program Design, Undergraduate Programming Language
Design, and Graduate Programming Language Design.

1.1 Local Needs
The population of computing students at WPI informed the
design of Human-Centered Programming Languages. We list
relevant traits:

• Undergraduate courses at WPI run on 7-week terms
(named A,B,C, and D) and graduate courses operate
on semesters. The book must provide flexibility in the
amount of material covered and the speed of coverage.

• Prerequisites are soft. Courses may have students who
have not yet studied recommended material.

• Most students have little proof experience, but some
will desire it.

• Students are historically strong at programming, with
an eagerness for project-based work. Many of these
students proceed to become software developers.

• Our master’s programs traditionally admit students
from a wide range of undergraduate majors and must
support students who are undergoing a transition in
their topic of study

• We have few PhD-specific courses, yet we have a sig-
nificant population of PhD students, and they take
master’s-level courses, often across disciplines. Thus
our courses must accommodate specialists in training
at the same time as transitioning students.

• Our computer science department’s gender diversity
is well below parity (25% non-men) [11] and racial di-
versity is low (11% URM) [11]. Approximately 19% of
students have disability accommodations [11]. Statis-
tics on LGBT+ students are unavailable, but lived expe-
rience suggests a substantial population. This combi-
nation of factors means a substantial body of students
may be marginalized and may benefit from explicit
gestures of inclusion.

The redefinition of PL education as fundamentally interdis-
ciplinary is motivated by this concrete pedagogical context,
with the hope of generalizing elsewhere.

1.2 Learning Objectives
The following learning objectives were identified in the syl-
labus of my graduate PL course in Spring 2023, which was
taught using notes that became the basis of the textbook:

1. Identify problems where programming language de-
sign can be used

2. Communicate with clarity and technical depth about
language design

3. Develop a mathematically-precise definition of a lan-
guage’s syntax

4. Develop a mathematically-precise definition of a lan-
guage’s semantics

5. Implement interpreters for programming languages
6. Situate your own work among the schools of thought

[archetypes] discussed in class
and the following classwork was outlined in the syllabus in
support of those learning objectives:

• Implement parts of a programming language (parsing,
evaluation, type-checking)

• Perform miniature language design exercises
• Perform a usability study about language design with
your classmates, and

• Engage critically with academic research about the in-
tersections of human-computer-interaction with social
issues as it pertains to programming languages

These learning objectives reflect the multiple nature of
the course: some students will value implementation, some
will value theory, and all will need to operate in an indis-
ciplinary setting. Though the textbook is designed with
these learning objectives and classwork in mind, it does

https://bookish.press/hcpl
https://github.com/rbohrer/pl-course

Centering Humans in the Programming Languages Classroom: Building a Text for the Next Generation SPLASH-E, October 25, 2023, Cascais, Portugal

not outright eliminate the fundamental complexity of teach-
ing in an interdisciplinary setting, which must be supported
through course design. Teaching grad PL in Spring 2023, an
ungraded [13, 22, 41], project-based [23] structure was used
to accommodate this interdisciplinary setting, but teaching
methodologies are expected to evolve over time.

1.3 Positionality Statement.
The author’s identity informs the work. When HCPL ad-
dresses disability, it speaks from her experience of Ehlers-
Danlos Syndrome and neurodivergence. When HCPL ad-
dresses gender, it speaks from her experience as a trans
woman. At the same time, best efforts are made to include
other marginalized people, without speaking over them:

• the treatment of gender and disability builds on inter-
sectional perspectives regarding race and culture, as
well as non-binary perspectives,

• open access removes economic barriers, and
• the author specifically sought out feedback from pro-
grammers from countries underrepresented by com-
puter science academia (e.g. Indonesia).

This is not a claim to perfection. The author wrote the book
because she wishes for it to exist, and any actually-existing
book will need ongoing revision for inclusivity.

2 Pedagogical Strategies
We describe the strategies taken in the construction of the
textbook to support its learning objectives, such as the use
of archetypes as characters who represent different humans
that study programming languages (Section 2.1), the choice
of topics (Section 2.2), the use of dialogues between the
archetypes (Section 2.3), and the design of exercises (Section
2.4) for applicability across multiple disciplines.

2.1 Archetypes
In contrast to user personas [33], the five archetypes of HCPL
represent multiple ways of engaging with PL through differ-
ent roles and academic disciplines. These archetypes are not
meant to be rigid or exclusionary: instead of forcing students
to "pick a side," the goal is to help students locate their own
perspectives among a menu, locate their classmates’ perspec-
tives, and communicate effectively even when perspectives
differ.

The five archetypes are the Practitioner, Implementer, The-
orist, Social Scientist, and Humanist. The textbook intro-
duces each archetype by discussing their values and what
questions they seek to answer. We do the same here.
The Practitioner: The Practitioner is someone who in-

teracts with code as a programmer, but does not implement,
design, nor theorize about programming languages. It is es-
sential that the Practitioner not be stigmatized nor viewed
as lesser than the other archetypes. A central point of the
book is that many in the audience fall into this group, that

they experience programming languages in a distinct way
from the other archetypes, and that this valid experience can
be put into conversation with the others.
The book provides pure speculation of potential Practi-

tioner traits; grounding these traits in evidence is ongoing
work. We cite lived experience as a primary way that the
Practitioner forms beliefs about programming languages:
they experience code by writing and reading it, and their
joys or frustrations in this process shape their beliefs about
languages. Moreover, the Practitioner is often goal-directed:
They wish to solve some problem by implementing software,
and their interest in programming languages is primarily as
a means to achieve this end.

The Practitioner’s fundamental question is "How do Iwrite
this program?"
The Implementer: An Implementer is anyone who im-

plements a programming language, typically as a compiler or
interpreter. By definition, they are simultaneously a Practi-
tioner, but they have an additional set of needs and concerns.
The Implementer is heavily concerned with tools for build-
ing languages. The implementer might use regular expres-
sions, context-free grammars (CFGs), and parsing expression
grammars (PEGs) to implement a parser and abstract syntax
trees to represent parsed programs. The Implementer needs a
strong understanding of a program’s meaning (semantics) in-
sofar as they need to faithfully capture a program’s meaning
in the implementation.
The Implementer’s fundamental question is “How do I

implement this programming language?”
The Theorist: The Theorist says that PLs are formal lan-

guages that can be defined and analyzed mathematically. A
“good PL” is a language that we can analyze in powerful
ways. A Type Theorist is a Theorist who believes a “good
PL” has a rich static type system that lets us prove powerful
theorems about the correctness of programs. The Theorist
understands programming language design as the task of
abstraction-building, the discussion of programming lan-
guages as abstraction-criticizing, and programming as the
use of abstractions.

The Theorist’s fundamental question is "What can I prove
about this language?"
The Social Scientist: The Social Scientist’s emphasis is

on the rigorous academic study of humans. The Social Scien-
tist may study humans for humans’ sakes or for the sake of
informing technical solutions to the users’ problems. They
could be embedded in computing fields such as HCI and
Software Engineering, or they could belong to standalone
fields such as Linguistics and Psychology. They often study
social issues within communities of programmers and com-
puter users. Who do these communities include or exclude?
Why? What could be done about that? These questions are
answered using scientific approaches, which can encompass
both quantitative or qualitative approaches. The Social Scien-
tist’s fundamental question about programming languages

SPLASH-E, October 25, 2023, Cascais, Portugal Rose Bohrer

is “How do programming languages affect communities of
people?”
The Humanist: The Humanist also studies society. For

this reason, some computer scientists ask how HCPL dis-
tinguishes the Humanist from the Social Scientist. In these
HCPL archetypes, themost important differences aremethod-
ology and motivation. Our Social Scientist draws heavily
on qualitative methodologies like surveys, interviews, and
observation of subjects. Our Humanist relies primarily on
critique, which often involves analyzing code as a written
text. Our Social Scientist is often situated within HCI or de-
sign settings, with a goal of using their analysis to directly
inform development of new artifacts. Our Humanist is often
situated outside these settings, with critique as its own ends.
In the context of HCPL specifically, the Humanist may be
situated within Gender Studies or Disability Studies. As with
all the archetypes, real-world Humanists are more varied
than a single character can portray.

To clearly distinguish the Humanist from the Social Scien-
tist, we could frame the Humanist’s fundamental question
as: "How can social critiques be applied to PLs?"
These five archetypes are chosen with intention. The in-

clusion of the Social Scientist and Humanist makes the work
firmly interdisciplinary. The resulting scope is wider than the
related concept of User-Centered Programming Languages,
an approach that uses the methods of the Social Scientist to
tend to the needs of the Practitioner. Instead, our emphasis
is on putting these archetypes into conversation with one
another. While these archetypes are interdisciplinary, their
disciplines are not equally distributed: three archetypes lie
solidly within Computer Science (the Practitioner, the Imple-
menter, and the Theorist). This is also intentional: the book
focuses on the needs of CS courses which wish to increase
their breadth, and thus CS has an outsized role.
The archetypes are used in two main ways: in chapter

outlines and summaries to help contextualize each chapter
within the broader aims of the book, and in literal dialogs be-
tween the characters intended to engage the reader directly
in interdisciplinary discourse (Section 2.3). For an example
use of the archetypes in a chapter outline, consider an outline
for the Regular Expressions chapter:

• The Implementer cares about regular expres-
sions because they are a core tool for imple-
menting a programming language, specifically
the part that parses basic building blocks of
syntax

• The Practitioner cares about regular expres-
sions because they are also used in a wide
variety of small text-processing tasks in pro-
gramming, such as parsing email addresses, IP
addresses, dates and times, passwords, plain-
text data files, and more. They can also be used

No. Title Length
1 Introduction 10min
2 What is a Language 25min
3 Programming in Rust 1hr
4 Regular Expressions 35min
5 Context-Free Grammars 50min
6 Parsing Expression Grammars 30min
7 Abstract Syntax Trees and Interpreters 35min
8 Operational Semantics 35min
9 Types 50min
10 Users and Designers 40min
11 Quantitative Methods & Surveys 45min
12 Qualitative Studies 15min
13 Gender 30min
14 Disability 20min
15 Media Programming 15min
16 Play 15min
17 Natural Language 25min
18 Diagramming 15min
19 Process Calculus 20min
20 Cost Semantics 20min
Table 1. Table of contents for current iteration of book

to efficiently search through large bodies of
text, such as the code you write.

• The Theorist cares about regular expressions
because their simplicity is their strength. Reg-
ular expressions are simple enough that many
properties about them can be computed by
programs, making it possible to design algo-
rithms and tools that make the Implementer’s
and Practitioner’s jobs easier.

• The Social Scientist might care which uses of
regular expressions in programming are most
common, and whether they are effective.

• The Humanist might care about the commu-
nicative limits of regular languages as tests,
and how the assumption of a regular language
places structural limitations on ability to com-
municate.

The goal of the outlines it not to be exhaustive nor pre-
scriptive, but to expose students to multiple motivations and
multiple truths which connect with different readers.

2.2 Topic Selection
We list the chapter titles and length estimates1 in Table 1
on page 4, group them into sections by theme, explore how
they were chosen, and suggest how they could be used. The
chapters can be grouped in the following way:
1The length estimates are provided automatically by the publishing platform,
Bookish.press. Reading time varies by reader, but these estimates give a
sense of relative length.

Centering Humans in the Programming Languages Classroom: Building a Text for the Next Generation SPLASH-E, October 25, 2023, Cascais, Portugal

• Chapters 1–2 introduce the book and its approach to
programming languages.

• Chapter 3 is a Rust [20] primer. It prioritizes the Prac-
titioner. It is the only chapter that focuses extensively
on a particular language; later chapters are predomi-
nantly language-agnostic with the language-specific
details separated out from the main text. Primers for
other languages could be added later.

• Chapters 4–7 prioritize the Implementer. By the end of
these chapters, students can implement a parser and
interpreter for a basic impure functional programming
language, which is Turing-complete.

• Chapters 8–9 prioritize the Theorist. By the end of
these chapters, students can translate between imple-
mentation and formal inference rules, including the
implementation of a type-checker when given rules.

• Chapters 10–12 prioritize the Social Scientist, partic-
ularly through the lens of HCI. By the end of these
chapters, students can design and execute a short user
study to address a research question about program-
ming languages.

• Chapters 13–14 prioritize the Humanist, drawing heav-
ily on perspectives from gender studies and disability
studies. By the end of these chapters, students can de-
scribe how major concepts from gender studies and
disability studies can influence discourse about pro-
gramming language design.

• Chapters 15–20 are breadth material. The first four
are case studies of specific issues in design through
specific projects such as Processing [37], Twine [14],
Flow-Matic [42], Inform [32], and Penrose [44]. The
last two chapters are breadth topics in the theory of
programming languages.

To choose which material to include, we require 1) that
every archetype get the leading role in at least one chap-
ter, preferably two, and we require that 2) the book should
meet the learning objectives. These criteria suffice to justify
chapters 1–14, the heart of the book. The remaining chap-
ters were chosen through the requirement that 3) breadth
material should be tailored to (inter)-disciplinary students’
interests. Chapters 15–18 aim to include Computational Me-
dia students and chapters 19–20 are an invitation to further
PL theory study.

To choose which material to exclude, the guiding principle
was literacy over operational ability. For this reason, proofs
are nearly absent from the book chapters, appearing only in
an optional section of Chapter 9. We focus on teaching a stu-
dent to comprehend the statement of a proof rule or theorem,
not prove it. Advanced topics from each field are excluded:
no dependent types, no optimizing compilers, no partici-
patory design workshops, no code-as-creative-writing [27].

Instead we focus on the core vocabulary of theory, imple-
mentation, design, and critical studies, with ample references
for self-study.

The chapter order suggests several possible course sched-
ules. For a semester-length interdisciplinary course (e.g., PL
+ HCI), chapters 1–14 are recommended as the core. Supple-
mentary material should be chosen based on instructor and
student interest, drawing from Chapters 15–20 or elsewhere.
Chapters can be used in disciplinary courses: CS (1–9), HCI
(10–12), gender studies (13), and disability studies (14).

2.3 Dialogues
Dialogue is an ancient teaching technique, since at least
Socrates. The Socratic method [1, 9] relies on the use of
questions to encourage a student to arrive at a correct answer.
However, Socratic dialogues assume a fixed truth which
can be predetermined by an instructor who then merely
helps the student arrive at the fixed truth. Dialogue has even
appeared in PL-adjacent curricula, e.g., through Proofs and
Refutations [26].

The dialogues in HCPL do not seek a fixed truth. Each dia-
logue starts with a question that might serve as a classroom
discussion topic, such as the value of properties like speed
or safety, or the value of formalisms like regular expression,
context-free grammars, and parsing expression grammars.
Instead of constructing one true answer to each question,
however, these dialogues serve to deconstruct a question
and reveal the variety of truths which hold for each of the
archetypes. These dialogues typically resolve with a greater
shared understanding, but not necessarily agreement. As an
example, we present a dialogue from the chapter on Context
Free Grammars, which starts with the question "Do context-
free grammars model human language?" Statements by each
archetype are annotated with their initials (P: Practitioner, I:
Implementer, T: Theorist, SS: Social Scientist, H: Humanist).

Q: Do context-free grammars model human lan-
guage?
SS: Of course they do. I invented context-free
grammars and I invented them to model natu-
ral human language. That’s what’s so amazing
about them, they can model every natural lan-
guage that has ever existed.
T:Woah! Did I just hear you make a universal
claim, SS? I never thought I’d see this day. Can I
prove this by induction?
SS: I won’t stop you from trying, but that’s not
how I went about it. We have data from lots of
different languages, and we’ve found the gram-
mar for all of them can be expressed as context-
free grammars. Speakers of those languages all
agree with us.
H: I never thought you would have me agreeing
with T, but desperate times call for desperate

SPLASH-E, October 25, 2023, Cascais, Portugal Rose Bohrer

measures. You and I both know not all human
language is context-free. What about Swiss Ger-
man? [40]
T: A proof by counter-example!
SS: Fine, fine, but if it works for most languages,
it has to be useful, right?
I: Useful for whom?
SS: Me? You? Anybody who speaks? Context-
free grammars are really flexible, I’m surprised
at all this backlash...
I: I’m not teaching a computer to talk, I’m teach-
ing it to run code. I don’t want a machine to be
flexible, I want it to be precise.
P: I’m with you on this one. How else would I
understand the documentation for a new pro-
gramming language?
SS: Context-free grammars are precise, but they
describe a whole set of possibilities. You need
that kind of flexibility for natural language. I
won’t stop you from using other tools for pro-
gramming, but you’re going to need this for nat-
ural language.
P: Sorry for ganging up on you, SS. I just started
writing a chatbot, and I think I’m starting to see
your point.
T: Sorry... Can I still do a proof?
SS: Actually, yeah, that’s the benefit of a simple
formalism.

In this dialogue, every archetype had something to say; in
others, as few as two might speak. Each speaker brings a
valid experience to the conversation: SS brings linguistic ex-
pertise, H brings critique, T brings careful logical reasoning,
I brings awareness of language implementation needs, and
P brings awareness of practitioner needs. The dialogue does
not necessarily conclude with agreement: the Implementer is
not required to prefer context-free grammars, the Social Sci-
entist is not required to give them up, and the Theorist and
Humanist are not required to believe a universal claim. In
this case, the dialogue provides a natural segue to the follow-
ing chapter on parsing expression grammars (PEGs), which
address the Implementer’s concern with non-deterministic
grammars. In this case, as with many real-world dialogues,
the discussion eventually diverges from the initial topic. This
is an intentional choice.

The success of dialogues in the classroom depends on how
they are integrated. We propose two potential uses. Firstly,
the dialogues can be assigned as pre-class reading to prepare
students for roleplay activities in class where they debate a
closely related topic from the perspective of each archetype.
Secondly, handouts of student-regulated language design
assignments can include the dialogues on a list of suggested
readings for students seeking design inspiration.

2.4 Exercises
The design of exercises is foundational to the success of
a textbook. To meet the unique interdisciplinary needs of
HCPL, the book takes a mixed approach to the design of
exercises. Examples are drawn from mixed domains, aim-
ing to cover the archetypes and cover the interdisciplinary
programs from which students come.

Exercises range from brief checks of understanding to full-
fledged research projects, which are indicated as such. We
describe several notable styles of exercises from the book,
which center CS but allow incorporation across multiple
disciplines:

• Traditional exercises:We include many traditional
exercises for PL courses such as implementing short
functions in a new language, defining regular expres-
sions, CFGs, and PEGs that implement a specification,
defining inference rules for new language features,
and (for courses where students have prior proof ex-
perience) proving classic theorems. We wish to retain
what works from traditional approaches.

• Implementation by Translation: Implementation is
a traditional exercise, but we wish to highlight the spe-
cific structure of our implementation exercises. To sup-
port studentswho alignwith the Implementer archetype,
a series of exercises are provided in which they imple-
ment a parser (including lexer), an interpreter, and a
type-checker for a basic impure functional language.
The algorithms for each are provided in pseudocode
in the text, thus the exercise consists of translating
pseudocode to the implementation language of choice.
This same principle appears in the small: other exer-
cises ask to translate inductive definitions from the
text into type definitions in code, to gain familiarity
with inductive definition.

• Code Autoethnography: To blend the interests of
the Practitioner and the Social Scientist, we include
structured autoethnography [10] exercises where stu-
dents write about their lived experience as a program-
mer. They keep a structured journal of their experi-
ence with a new programming language, each time
answering questions such as "What error messages, if
any, confused you?" "What language features did you
look up?" and "What bugs, if any, consumed the most
of your time?". This journal can then be analyzed in
further autoethnographic analysis. This builds on the
established technique of reflective journals [15] but
emphasizes the role of personal narrative and critical
interpretation.

• Critical essays: We provide essay prompts for use
in courses across the humanities. Prompts include a
cultural study on programming languages that center
Classical Chinese and post-structuralist comparison
of static typing to either gender or genre.

Centering Humans in the Programming Languages Classroom: Building a Text for the Next Generation SPLASH-E, October 25, 2023, Cascais, Portugal

• Corpus studies: For Social Scientists, we include cor-
pus development and analysis exercises. Example top-
ics include: "How are regular expressions used in pro-
duction software?," and "What aspects of abstract syn-
tax trees and intermediate representation design do
Implementers focus on in online discourse?"

• Human-Centered Theory:We include exercises that
highlight how the Theorist’s methodology is compat-
ible with human-centered values. Human-centered
theory exercises include the development of provably-
accessible languages, provably-ergonomic context-free
grammars, and proofs of the expressive power of an
interactive fiction framework (Twine [14]).

• Design prompts: Our exercises invite students to de-
sign artifacts such as style sheets for colorblind acces-
sibility, questionnaires for usability questions of their
choice, and static type systems for domain-specific
languages in multi-media applications.

Many of these exercises are ambitious, even research-level.
However, this is by design in a textbook intended for use
both at the undergraduate and PhD level. The key in using
these exercises is that they are written with the expectation
of instructor tailoring for local conditions: in undergraduate
courses, scope should be restricted and scaffolding provided.
In theoretical problems, definitions and lemma statements
should be provided. In design problems, key design elements
can be given. In corpus studies, the instructor can suggest
specific sources and an expected corpus size. For PhD stu-
dents, these scaffolds can be removed in order to practice
research skills.

3 Data Analysis
We carry out a qualitative analysis of written student re-
sponses in course evaluations across three courses to answer
the following research questions pursuant to the develop-
ment of the HCPL textbook:

1. What sentiments do students hold toward ungrading
in an HCPL-based course?

2. What course delivery recommendations did students
make for future iterations of an HCPL-based course?

3. What sentiments do students hold toward the cen-
tering of human issues, including social issues, in PL
curricula?

4. What sentiments do students hold toward language
choice in PL and PL-adjacent courses?

The following course evaluations were analyzed:
• Course A: Programming Language Design (CS 4536),
A-term 2021: 14 respondents of 31 students (45%).

• Course B: Introduction to Program Design (CS 1101),
A-term 2022: 46 respondents of 70 students (66%).

• Course C: Programming Language Design (CS 536),
Spring semester 2023: 14 respondents of 16 students
(88%).

Of these, only C used the notes that precede HCPL. Thus,
these course evaluations occurred early enough to inform
the direction of the HCPL project. Course A was based
on Programming Languages: Application and Interpretation
(PLAI) [24] and B was based on How to Design Programs
(HtDP) [12], which shares an author with PLAI. Additionally,
C was ungraded, relying on self-defined student projects and
student self-reflection, while A and B were graded.

For this reason, the results from C receive the closest anal-
ysis. For C, we undertook a thematic analysis [4] process
which consists of (1) familiarizing with the data, (2) assigning
codes to the data, (3) searching for themes in the data, (4)
reviewing themes, (5) defining and naming themes, and (6)
writing the results. The analysis of A and B were restricted to
analysis of the only questions deemed transferable to HCPL:
questions about incorporating social issues in curricula and
about language choice. We discuss threats to validity or lim-
itations of the analysis, then analyze results from C, A, and
B in that order.

We do not quote course evaluations out of concern that stu-
dents may have assumed confidentiality. Instead, we quote
from an end-of-semester email sent by one student, who
explicitly agreed to publication. The email is separate from
the thematic analysis.

3.1 Threats to Validity
Every study has threats to validity which limit the extent to
which its results can be generalized, and the present study is
no different. We highlight validity threats from sample size,
response rate, and gender bias:

1. We consider 74 course evaluations from 117 students
across 3 courses at the same institution. These students
represent a small fraction of all PL students worldwide,
and results may not generalize across all courses and
contexts.

2. The response rate varies substantially across courses,
from 45% to 88%. For courses with lower response
rates, numerical trends in course evaluation responses
may not fully represent the population. Of the three
courses, the strength of the Course C evaluations is
near-universal participation, but even here, the capac-
ity to compare data between A and C is limited.

3. It is well-documented that student course evaluations
are biased by perceived instructor gender [29]. This
is a threat to validity because the author’s perceived
gender changed after teaching A and before B and C,
due to gender transition. Due to this threat, we abstain
from direct analysis of satisfaction ratings.

3.2 Thematic Analysis: Course C
The data source for this analysis consisted of three open-
response questions which are asked on every course evalua-
tion at WPI [emphasis in original]:

SPLASH-E, October 25, 2023, Cascais, Portugal Rose Bohrer

• "What did you particularly LIKE about this course?"
• "What did you particularly DISLIKE about this course?"
• "Can you suggest anything that the instructor could
do to improve the quality of teaching?"

Evaluations include a fourth standard question: "Would you
encourage a friend to take a course from this instructor?
Why or why not?" This question was excluded from analysis
because responses were disconnected from course content.
Before undertaking the thematic analysis, we prepared

the data by removing responses which were fully unrelated
to HCPL. This removal was conservative: if any potential
relationship was identified, the data were kept. For exam-
ple, data which discussed presentation aids, examples, and
interactive lectures were kept, because textbooks typically
influence their development. Most of the removed data were
flat assertions of whether students liked the instructor, with-
out further comments. The remaining data were interpreted
through a six-step thematic analysis process guided by the
research questions. This analysis was "big-Q qualitative," [5]
meaning that reproducibility was not a priority. The data
were coded by one person, the author, and this analysis em-
braces the author’s subjectivity in identifying themes on
which to base discussion.

We name and define the themes that were identified in this
analysis. In parentheses we indicate how many responses
were coded with each theme. These counts do not sum to
the total number of responses, because each open-ended
question was optional and we only coded responses that
pertain to the research questions.
Ungrading improved learning outcomes (4). Students
identified self-direction in the choice of course projects as a
strength of the ungraded approach. Multiple students iden-
tified this agency as increasing their intrinsic motivation
by connecting with motivating topics. In some cases, the
students expressed surprise that their interest and learning
exceeded expectations, with one student concluding that this
approach helped them find their place within the topic. This
theme was reinforced by an email from a student, we quote:

I probably lost a lot more sleep than I should
have doing some work on the project, but I only
did it because I really enjoyed the freedom to
design whatever we wanted. . . . Coming into
this class I didn’t have any prior interest or ex-
perience in theory behind languages but this
definitely stoked my desire to work with it.

Though the HCPL book is not designed with the intention of
students losing sleep, we wish to emphasize that this student
linked agency and motivation explicitly.
Self-directed learning is in tensionwith desire for struc-
ture (3). Students expressed desire for structure and account-
ability within project-based work. Suggestions included the
use of detailed timelines with specific deadlines and goal-
setting processes. Though the instructor encouraged the use

of these techniques, they were not enforced. These responses
can be understood as a call to enforce them.
Ungrading reduced overall stress (2). Students identified
ungrading as a means to reduce stress, particularly by giv-
ing students agency over the amount of time they wish to
invest in a particular course. Revisiting the previous end-
of-semester email, some students who experienced stress
interpreted it as positive stress:

. . . it has been amazing overall and taught me so
much, especially because it was a tough term per-
sonally. What a great experience that I wanted
to spend all of my time on.

Though this student may have experienced work stress, they
cited the holistic experience as hoping them cope with a
stressful time in life, due to their high motivation.
Ungrading is incompatiblewith rigorousmathematical
courses (1). One student directly opposed the use of ungrad-
ing, citing it as incapable of providing intellectual challenge
and incompatible with use in logic and math-related courses.
Preparation of slides, examples, and interactivity sup-
port learning (5). Students identified presentation aspects
such as use of slides, examples, and interactions with stu-
dents as the primary point of improvement. For context,
course C was taught using paper notes and a whiteboard,
but without slides, in contrast to A. This was done primar-
ily due to time constraints, with note development taking
priority over slide development. Though this theme identi-
fied a limitation of the latest course offering, it is consistent
with the approach of the HCPL textbook: open publication
of course materials can assist future instructors who are in
need of these aids.
Interpersonal interaction was valued (2). Students re-
acted positively to two kinds of interaction between students
in the course: one planned and one unplanned. By design,
their coursework included developing a user study and carry-
ing it out on classmates, which was viewed positively. With-
out planning, a pattern emerged that students would stay
after class to discuss their projects with project teammates,
while the instructor walked through the room to check in
on each student. This was valued as well.
Breadthwas valued (2). Students identified the broad range
of themes as a strength, including exposure to case studies
of programming languages which they are unlikely to en-
counter in their daily lives.
Social issues were perceived as mattering (1). One stu-
dent reacted positively to the integration of social justice
issues with PL education.
The human-centered approach was perceived as divi-
sive (3). Three students’ responses were interpreted as re-
jections of various aspects of the human-centered approach.
One student criticized the focus on user studies. One alluded
to the inclusion of irrelevant material but did not make direct
claims. One made a direct, emotionally-charged rejection of

Centering Humans in the Programming Languages Classroom: Building a Text for the Next Generation SPLASH-E, October 25, 2023, Cascais, Portugal

social issues such as gender and disability being covered in
readings or classroom discussions, explicitly describing these
topics as unwelcome in a computer science classroom out-
side the limited domain of the department’s required course
on social implications of computing.

3.3 Narrow Analysis of Social Attitudes: Course A
In contrast to the Course C course evaluations, the instructor
added several custom questions to the Course A evaluation.
The following question was deemed relevant: "In general,
how would you like to see social impacts and social issues
incorporated into the teaching of CS classes in the future?"
For context, these issues were covered in Course A in a
substantially more limited way than C. No readings nor
classroom discussions were assigned relating to social issues.
Instead, several of the weekly assignments included written
problems tying social issues to programming languages, such
as discussions of type systems for privacy and representation
of gender as an algebraic datatype.

Because the implementation varied between Course A and
C, we undertook a limited analysis and coded each response
by whether it supported or opposed the coverage of social
issues in computer science. Of 10 respondents that answered
this question, 8 were in support and 2 in opposition. This
is in sharp contrast to C, where 1 was in support and 3 in
opposition. Conclusive interpretations cannot be drawn from
these limited data, but we propose the following potential
explanations:

• Students may have preferred the delivery approach of
Course A over C, addressing these issues privately and
as add-ons to other work, rather than as the subject of
full lectures,

• Differences in response rate and sampling noise could
increase variance, or

• It cannot be ruled out that students react positively
to discussion of social issues when the speaker is per-
ceived as a cisgender man (A), but not when perceived
as a transgender woman (C).

3.4 Narrow Analysis of PL Attitudes: Course B
We include Course B in this discussion because HtDP and
PLAI come from a shared tradition and share a language:
Racket. Students were asked to give open-ended feedback
for consideration by the committee tasked with curriculum
design: "A committee is currently evaluating the design of
our introductory courses. What, if anything, do you want to
tell them?" Though the question was open-ended, students
commented on language choice to the instructor throughout
the term, and the instructor asserted in class that opinions
on language choice could be directed to this question. We
coded the responses to this question by whether they viewed
Racket positively, neutrally, negatively, or whether they did
not mention it at all. Of 26 responses, 11 mentioned Racket,

and all 11 mentions were negative, primarily criticizing it as
disconnected from future student needs.

3.5 Discussion of Results
We summarize the above results through the research ques-
tions (RQs), then discuss the implications of each in turn.

1. Ungrading and self-direction improved intrinsic moti-
vation and reduced stress formany, but raised concerns
of extrinsic motivation and rigor for some.

2. Students recommended presentation aids and scaffold-
ing of self-directed work.

3. Students who rejected the treatment of social issues
outnumbered those who felt validated by it.

4. Students in Course B identified perceived future usage
as a core motivator in language choice.

In RQ1, a potential response to requests for rigor and
extrinsic motivation would be to mix graded implementation
work with ungraded design work.

In RQ2, the recommendations are clear: presentation aids
and additional scaffolding can both be implemented in future
iterations.

In RQ3, the responses could generously be interpreted as
a call to explore more varied methods for the inclusion of
social issues. Less generously, they reflect the fundamental
nature of marginalization. Work which prioritizes a power-
minority invites targeting by the power-majority. The HCPL
book is unapologetic in doing so.
In RQ4, perception matters. No language is guaranteed

to be viewed as a motivator. The author has argued else-
where [2] for the motivational potential of Rust, which mo-
tivates its use in the Fall 2023 offerings of CS 4536 and CS
536.

4 Related Work
This work is developed in conversation with related areas of
education scholarship: self-regulated learning, open educa-
tion, and PL education.

4.1 Self-Regulated Learning
Self-regulated learning research [45] recognizes the goal
of education as preparing students for life-long learning.
HCPL fully endorses this goal. However, the same research
recognizes fundamental challenges of self-regulated class-
rooms: self-regulation is a trait which can take a long time
to emerge and is influenced by social context. Moreover, the
removal of extrinsic motivation in the absence of intrinsic
motivation can lead to decreased student satisfaction. Due
to this complexity, HCPL is designed to accommodate both
self-regulated and teacher-regulated learning. Exercises in-
clude self-regulatory techniques like goal-setting, strategic
planning, self-recording, and self-reflection. Many techni-
cal exercises are also included which can be assessed using
traditional methods. The self-regulatory exercises can be

SPLASH-E, October 25, 2023, Cascais, Portugal Rose Bohrer

incorporated into ungrading-based approaches, which pri-
oritize intrinsic motivation over extrinsic motivation and
criticize the power dynamics inherent to grading.

4.2 Open Education
Open education [16, 19, 39, 43] is the practice of teaching in
the open, with course materials fully available to the public
at no cost. The textbook is developed in open fashion. Open
education brings multiple benefits. The curriculum author
benefits from increased audience and impact. Instructors at
other institutions benefit from an additional resource. Self-
taught students benefit from the removal of gatekeepers.
Open resources are found at https://github.com/rbohrer/

pl-course. Open auto-grading is an example of one moder-
ate ungrading approach that could be used in HCPL-based
courses: though the instructor sets a fixed evaluation stan-
dard, the student has full transparency into evaluation, al-
lowing student-instructor interactions to focus on achieving
course goals instead of grades.
In addition to the exercises described here, each chapter

includes a list of proposed classroom activities. These ac-
tivities include both active-learning work for students and
presentational suggestions for instructors, to assist writing
lecture plans.

4.3 Programming Languages Education
This project draws on a long line of PL education research,
best summarized through prior textbooks. Though this project
was undertaken because existing books were insufficient for
the author’s classroom needs, it still owes those books a great
debt. We reuse proven approaches from prior texts, even as
we radically challenge their scope and framing.

The works of Shriram Krishnamurthi are clear influences
on the text. The author used Krishnamurthi’s text Program-
ming Languages: Application and Interpretation (PLAI) [24]
prior to the development of her own text. We build on several
insights of PLAI: implementation is appealing coursework
for many computer science students, and frequent under-
standing checks throughout the text are essential. We de-
emphasize programming paradigms [25]. The differences are
substantial, however: we are language-agnostic, we include
parsing, we limit implementation to a minimal language, and
we include extensive interdisciplinary material. The integra-
tion of social issues within the book aligns with a growing
trend of integration across the CS curriculum [8].
Not all our influences are textbooks. Courses offered by

Coblenz and Aldrich [6] are major influences. We also cite
non-text-books on programming languages, such as Crafting
Interpreters [34], as a minor influence.
The HCPL text is developed with an awareness of suc-

cessful texts on the theoretical foundations of programming
languages [17, 35, 38], yet seeks to avoid duplicating them
where they have already succeeded. On the contrary, the

breadth approach aims to help identify when students wish
to pursue theoretical foundations further.

Few textbooks address programming languages with aca-
demic rigor with methods from outside computer science.
The most direct precursor on this front is The Programmer’s
Brain [18], but it is framed around programming in general
rather than programming languages alone.

5 Discussion
This section explores several aspects of the book’s practical
use raised as discussion topics during peer-review.

How can educatorswith computer science backgrounds
address teaching material outside CS?. Educators are en-
couraged to view their background as a strength rather than
a weakness. In any interdisciplinary course, it is typical for
the educator to have a stronger background in one discipline
than others. Educators can draw on their own background
to help tailor materials to suit their students. To ensure that
educators are supported in this process, preparation can
start from the provided materials, including the text itself
as well as provided lecture slides. When students present
with questions that an instructor cannot answer due to their
background, the instructor can lean on the importance of
self-regulated learning and encourage students to self-study
by following relevant references in the book.

How can teaching goals outside CS be assessed? The
authors’ own courses reflect multiple strategies. The A-term
2021 iteration of CS 4536 included multiple-choice questions
in weekly assignments. This format could be used to assess
certain (e.g., factual) knowledge.
The Fall 2023 iterations of CS 536 and CS 4536 rely on

ungraded peer assessment, with an intention of rewarding
engaging while de-emphasizing the existence of a universal
"correct" answer.

The HCPL textbook also includes essay-writing prompts,
but these should only be used for evaluation when course
staffs are equipped to evaluate writing.

What strategies can instructors take in using this
book at scale? The book is designed with scale in mind,
and the human-centered approach is not inherently harder
to scale than others. In Fall 2023, it is used in two courses
with over 80 combined students and a single (20-hour/week)
teaching assistant. All programming work is auto-graded,
which scales cleanly. Completion grading with peer evalua-
tion is used for written work. This scales well, with the main
barriers being (1) assignment of peer reviewers and (2) check-
ing for bogus submissions. Tools exist which automate both
of these tasks, achieving scalability. In particular, our course
management system (Canvas) has built-in peer-assessment.

https://github.com/rbohrer/pl-course
https://github.com/rbohrer/pl-course

Centering Humans in the Programming Languages Classroom: Building a Text for the Next Generation SPLASH-E, October 25, 2023, Cascais, Portugal

6 Conclusion
This paper presented the programming languages textbook
Human-Centered Programming Languages, its design ratio-
nale, its pedagogical approach, and its potential applications
in the classroom. This paper is written as the book reaches its
initial public release. On one hand, the contents are not im-
mature: the lecture notes which preceded the book have been
used as the sole text for a semester-long course, and the book
has expanded by a factor of two in that time, and undergone
revision. On the other hand, revision will continue.

This paper includes a qualitative analysis of course evalua-
tions from two PL courses and an introductory course using
functional programming. The results of this analysis inform
the ongoing process of revision. Through this process, the
range of topics covered is likely to grow, but is nevermeant to
replace PL depth courses, instead establishing a new form of
PL breadth course founded in an interdisciplinary approach.

7 Acknowledgments
Thanks to Molly Feldman for encouraging me to submit this
work to SPLASH-E. Thanks to Matthew Ahrens for feedback
on a draft. Thanks to Gillian Smith, Chris Martens, Hannah
Gommerstadt, and many others for encouraging me to keep
writing the book, including the members of a semi-public
Discord server2 related to the book. Thanks to Amy Ko for
developing the platform Bookish.press which was used to
write the book. Human-Centered Programming Languages is
the first textbook written on the platform other than Amy’s
own, and she has provided extensive technical support.

References
[1] Hugh H Benson. 2006. Plato’s method of dialectic. In Blackwell Com-

panion to Plato. Blackwell Publishing Malden, MA etc, Singapore, 85–
99.

[2] Rose Bohrer. 2022. Imagining Introductory Rust. In RustEdu. Rust Edu,
Virtual, 27–33.

[3] Rose Bohrer. 2023. Human-Centered Programming Languages. Self-
published, Virtual. https://bookish.press/hcpl Author’s note: it is
possible that future editions will be published under an open-access
academic press.

[4] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. American
Psychological Association, Washington, DC.

[5] Victoria Clarke, Virginia Braun, and Nikki Hayfield. 2015. Thematic
analysis. Qualitative psychology: A practical guide to research methods
3 (2015), 222–248.

[6] Michael J. Coblenz, Ariel Davis, Megan Hofmann, Vivian Huang, Siyue
Jin, Max Krieger, Kyle Liang, Brian Wei, Mengchen Sam Yong, and
Jonathan Aldrich. 2020. User-Centered Programming Language De-
sign: A Course-Based Case Study. CoRR abs/2011.07565 (2020), 7 pages.
arXiv:2011.07565 https://arxiv.org/abs/2011.07565

[7] Michael J. Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L.
Wise, Celeste Barnaby, Joshua Sunshine, Jonathan Aldrich, and Brad A.
Myers. 2021. PLIERS: A Process that Integrates User-Centered Meth-
ods into Programming Language Design. ACM Trans. Comput. Hum.
Interact. 28, 4 (2021), 28:1–28:53. https://doi.org/10.1145/3452379

2Readers are welcome to contact the author for invitation to the server.

[8] Lena Cohen, Heila Precel, Harold Triedman, and Kathi Fisler. 2021. A
New Model for Weaving Responsible Computing Into Courses Across
the CS Curriculum. In SIGCSE. ACM, Virtual, 858–864.

[9] Haris Delić and Senad Bećirović. 2016. Socratic method as an approach
to teaching. European Researcher. Series A 111, 10 (2016), 511–517.

[10] Carolyn Ellis, Tony E Adams, and Arthur P Bochner. 2011. Au-
toethnography: an overview. Historical social research/Historische
sozialforschung 36, 4 (2011), 273–290.

[11] WPI CS Department Faculty. 2022. WPI CS Broadening Participation
in Computing Plan.

[12] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. 2018. How to design programs: an introduction to pro-
gramming and computing. MIT Press, Cambridge, MA.

[13] Shaun Ferns, Robert Hickey, and Helen Williams. 2021. Ungrading,
supporting our students through a pedagogy of care. International
Journal for Cross-Disciplinary Subjects in Education 12, 2 (2021), 4500–
4504.

[14] Interactive Fiction Technology Foundation. 2023. Twine 2.7.0.
[15] Susan E George. 2002. Learning and the reflective journal in computer

science. In Australasian Computer Science Conference, Vol. 2. Australian
Computer Society, Melbourne, 77–86.

[16] Rose M Giaconia and Larry V Hedges. 1982. Identifying features of
effective open education. Review of educational research 52, 4 (1982),
579–602.

[17] Robert Harper. 2016. Practical foundations for programming languages.
Cambridge University Press, Cambridge, UK.

[18] Felienne Hermans. 2021. The Programmer’s Brain: What every pro-
grammer needs to know about cognition. Manning, Shelter Island, NY.

[19] Jan Hylén. 2006. Open educational resources: Opportunities and chal-
lenges. Proceedings of open education 4963 (2006), 10 pages.

[20] Steve Klabnik and Carol Nichols. 2023. The Rust programming language.
No Starch Press, San Francisco.

[21] Amy J. Ko. 2016. What is a programming language, really?. In Pro-
ceedings of the 7th International Workshop on Evaluation and Usability
of Programming Languages and Tools, PLATEAU@SPLASH 2016, Am-
sterdam, Netherlands, November 1, 2016, Craig Anslow, Thomas D.
LaToza, and Joshua Sunshine (Eds.). ACM, Amsterdam, 32–33. https:
//doi.org/10.1145/3001878.3001880

[22] Alfie Kohn and Susan D Blum. 2020. Ungrading: Why rating students
undermines learning (and what to do instead). West Virginia University
Press, Morgantown.

[23] Dimitra Kokotsaki, Victoria Menzies, and AndyWiggins. 2016. Project-
based learning: A review of the literature. Improving schools 19, 3 (2016),
267–277.

[24] Shriram Krishnamurthi. 2007. Programming languages: Application
and interpretation. Self-published, Online.

[25] Shriram Krishnamurthy. 2008. Teaching programming languages in a
post-linnaean age. In SIGPLAN Workshop on Programming Language
Curriculum. ACM, Cambridge, MA, 81–83.

[26] Imre Lakatos. 1963. Proofs and refutations. Nelson, London.
[27] T. Memmott. 2011. Codework: Phenomenology of an anti-genre. Jour-

nal of Writing in Creative Practice 4, 1 (2011), 93–105.
[28] John C Mitchell. 1996. Foundations for programming languages. Vol. 1.

MIT Press, Cambridge, MA.
[29] Kristina MW Mitchell and Jonathan Martin. 2018. Gender bias in

student evaluations. PS: Political Science & Politics 51, 3 (2018), 648–
652.

[30] Brad AMyers, Amy J Ko, Thomas D LaToza, and YoungSeok Yoon. 2016.
Programmers are users too: Human-centered methods for improving
programming tools. Computer 49, 7 (2016), 44–52.

[31] Brad A. Myers, John F. Pane, and Amy J. Ko. 2004. Natural program-
ming languages and environments. Commun. ACM 47, 9 (2004), 47–52.
https://doi.org/10.1145/1015864.1015888

https://bookish.press/hcpl
https://arxiv.org/abs/2011.07565
https://arxiv.org/abs/2011.07565
https://doi.org/10.1145/3452379
https://doi.org/10.1145/3001878.3001880
https://doi.org/10.1145/3001878.3001880
https://doi.org/10.1145/1015864.1015888

SPLASH-E, October 25, 2023, Cascais, Portugal Rose Bohrer

[32] Graham Nelson. 2001. The Inform Designer’s Manual. Interactive
Fiction Library, Virtual.

[33] Lene Nielsen. 2013. Personas - User Focused Design. Human-Computer
Interaction Series, Vol. 15. Springer, London. https://doi.org/10.1007/
978-1-4471-4084-9

[34] Robert Nystrom. 2021. Crafting interpreters. Genever Benning.
[35] Benjamin C Pierce. 2002. Types and programming languages. MIT

Press, Cambridge, MA.
[36] Benjamin C Pierce. 2004. Advanced topics in types and programming

languages. MIT Press, Cambridge, MA.
[37] Casey Reas and Ben Fry. 2006. Processing: programming for the media

arts. Ai & Society 20 (2006), 526–538.
[38] John C Reynolds. 1998. Theories of programming languages. Cambridge

University Press, Cambridge, UK.
[39] John Seely Brown and RP Adler. 2008. Open education, the long tail,

and learning 2.0. Educause review 43, 1 (2008), 16–20.
[40] Stuart Shieber. 1985. Evidence againts the context-freeness of natural

language. Linguistics and Philosophy 8 (1985), 333–343.

[41] Jesse Stommel. 2018. How to ungrade. https://www.jessestommel.
com/how-to-ungrade/

[42] Alan Taylor. 1960. The flow-matic and math-matic automatic program-
ming systems. Annual Review in Automatic Programming 1 (1960),
196–206.

[43] David Wiley, TJ Bliss, and Mary McEwen. 2014. Open educational
resources: A review of the literature. In Handbook of research on
educational communications and technology. Springer, New York, NY,
781–789.

[44] Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise,
Jonathan Aldrich, Joshua Sunshine, and Keenan Crane. 2020. Penrose:
from mathematical notation to beautiful diagrams. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 144–1.

[45] Barry J Zimmerman. 2002. Becoming a self-regulated learner: An
overview. Theory into practice 41, 2 (2002), 64–70.

Received July 27, 2023

https://doi.org/10.1007/978-1-4471-4084-9
https://doi.org/10.1007/978-1-4471-4084-9
https://www.jessestommel.com/how-to-ungrade/
https://www.jessestommel.com/how-to-ungrade/

	Abstract
	1 Introduction
	1.1 Local Needs
	1.2 Learning Objectives
	1.3 Positionality Statement.

	2 Pedagogical Strategies
	2.1 Archetypes
	2.2 Topic Selection
	2.3 Dialogues
	2.4 Exercises

	3 Data Analysis
	3.1 Threats to Validity
	3.2 Thematic Analysis: Course C
	3.3 Narrow Analysis of Social Attitudes: Course A
	3.4 Narrow Analysis of PL Attitudes: Course B
	3.5 Discussion of Results

	4 Related Work
	4.1 Self-Regulated Learning
	4.2 Open Education
	4.3 Programming Languages Education

	5 Discussion
	6 Conclusion
	7 Acknowledgments
	References

