
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/366812272

Imagining Introductory Rust

Conference Paper · August 2022

CITATIONS

0
READS

59

1 author:

Some of the authors of this publication are also working on these related projects:

Certifying Compilation for Logic Programs View project

Rose Bohrer

Worcester Polytechnic Institute

28 PUBLICATIONS   360 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Rose Bohrer on 02 January 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/366812272_Imagining_Introductory_Rust?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/366812272_Imagining_Introductory_Rust?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Certifying-Compilation-for-Logic-Programs?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rose-Bohrer?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rose-Bohrer?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Worcester-Polytechnic-Institute?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rose-Bohrer?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rose-Bohrer?enrichId=rgreq-91e91f342a26bf2bf7023d38d463e35a-XXX&enrichSource=Y292ZXJQYWdlOzM2NjgxMjI3MjtBUzoxMTQzMTI4MTExMDY3ODMzNEAxNjcyNjkyODc4MTkw&el=1_x_10&_esc=publicationCoverPdf


Imagining Introductory Rust

Rose Bohrer
Computer Science Dept.
Worcester Polytechnic Institute
<rbohrer@wpi.edu>

Rust-Edu Workshop 2022
https://rust-edu.org/workshop

Abstract

Though the Rust community has expressed interest in designing introductory-level computer science courses
around Rust, such courses remain hypothetical as of this writing. Thus, this paper has a speculative style,
imagining one design for a future introductory-level Rust course. I do so in the context of a discussion on the
state of programming languages in introductory courses and a review of students’ educational needs in these
courses. My goal is to inform the development of such future courses.

1 Introduction

Introductory computer science (CS) courses are at the heart of CS education. For many students, they are
the first or only exposure to CS, informing the choice whether to continue with CS. For instructors, they are our
largest opportunity to show students which skills are valued in CS.

An introductory-level Rust course becomes an increasingly reachable goal as the language matures. The lack
of an introductory Rust course is not for lack of educators in the Rust community. Rather, introductory courses’
outsized enrollments and impacts motivate a slow, careful rate of change. An introductory Rust course deserves
robust discourse before implementation. To that end, I use my first-person educational experience (consistent
with the tradition of Burkhardt and Schoenfeld [3]), to speculate a design for a future Rust course. Many of my
design choices may be common sense to readers, but nonetheless remain key to developing robust discourse.

Why Am I Interested in Introductory Rust? The author has several years’ experience teaching introductory-
level courses in functional programming languages, first teaching CMU’s course 15-150 in Standard ML, now
WPI’s course CS 1101 in Racket. Standard ML and Racket, like Rust, could be considered minority program-
ming languages, i.e., their user bases are smaller than Rust’s [27]. Instructors of such courses are often asked
to justify the use of minority languages, given that large user bases are associated with career potential, a
source of student motivation [10], and availability of community support.

In exploring “Why Racket?,” I find myself asking “Why not Rust?” If taught successfully, Rust has the potential to
expose students to foundational issues ranging from data layout to type systems while side-stepping criticisms
of minority languages’ syntactic difficulty, lack of applications, and lack of career potential. Because sense
of belonging is known to promote underrepresented students’ persistence [12] and seeing successful people
similar to oneself promotes self-efficacy [2], Rust’s intentional inclusion efforts (e.g., its code of conduct [26])
are also attractive.

2 What’s Valued in an Introductory Language?

I identify guiding values for course design by summarizing literature on student motivation and personal expe-
riences with instructor constraints. In Section 4, I assess how the proposed course satisfy or fail to embody
these values.

Satisfying Student Motivations Available data mostly assess CS as a whole, not language choice of in-
troductory courses in particular. I summarize published data from Carleton [13] and the Data Buddies report

27



at WPI [10]. Both reported high intrinsic motivation to learn core CS concepts across demographic groups.
The WPI data [10] cite career and earning potential as major motivators, with somewhat elevated impact for
underrepresented minority students. The WPI data [10] cite social impact as a major motivator, with somewhat
elevated impact for women.

Instructors should connect the use of Rust to these motivations, framing it as connected to CS foundations,
with potential growth in industrial use and social impact. Beyond mere marketing, this messaging is supportive
of student engagement and thus learning.

Instructor Motivations The RustEdu audience, like the author, may be intrinsically motivated to use Rust.
Outside this audience, extrinsic instructor motivations such as saving time should also be considered. Auto-
grading is a major time-saving approach in introductory education [29], so test synthesis tools like SyRust [25]
could be explored to generate tests automatically. Instructors using auto-graders should be aware of attendant
meta-cognitive challenges [20] and consider feedback DSLs [18] as one approach to overcoming them.

3 What Would a Rust Course Look Like?

I propose a Rust counterpart to WPI’s intro CS course CS 1101. CS 1101 is a 7-week course based on
the textbook How to Design Programs (HtDP) [7]. I base my proposal on a recent iteration from the third
term of the 2021–2022 academic year. CS 1101 combines lectures where the instructor demonstrates Racket
programming with lab sections where students program Racket under teaching assistants’ supervision.

CS 1101’s explicit learning goals are writing and testing (Racket) programs with lists, trees, user-defined data,
recursion, and mutation. Viewed from such a high level, Racket appears as well-suited as Rust. In exploring a
Rust version of the course, however, we will observe opportunities to incorporate additional objectives from a
typical 4-year CS curriculum [1]. In particular, we add the goal of providing preliminary expose to key systems
programming issues such as aliasing and data layout, as well as programming language theory issues of static
typing and its correctness benefits.

Assessments include daily active learning quizzes and 3 exams. Moreover, CS 1101’s 7 weeks correspond to 7
assignments on the following topics: 1. Function composition 2. Structure definitions 3. Sums and lists 4. Binary
search trees 5. Higher-order functions, and 6. Mutation and accumulators. I enumerate how each assignment,
in turn, could be redeveloped with Rust at its center.

1. The coding section has students write a one-line program that displays an image on the screen. Graphi-
cal programs are a widely-used teaching technique to provide an immediate visual payoff:[19]. I propose
keeping the graphical elements in the hope that immediate visual payoffs could stimulate student persis-
tence. Nascent GUI libraries [15] could be used. The written section has students evaluate programs
step-by-step. Instructors should distill formal semantics like Oxide [28] into an informal semantics for stu-
dents to show program evaluation and state change step-by-step. The Rust debugger for VSCode should
be used to self-check results. Instruction should emphasize the importance of both state and reduction of
expressions to values.

2. Students define product types such dates and metadata for books. This translates directly to Rust. Class
time can be spent discussing in-memory layout of struct fields, in preparation for systems programming.

This assignment introduces the HtDP [7] methodology’s requirement of writing type signatures on all
functions despite the use of an untyped language. To maximize motivation, types in Rust should be framed
as helping students achieve their own goal of bug-free code instead of being an arbitrary requirement.
Students use class time to write buggy expressions and see Rust catch bugs. This reinforces the learning
goal that static types prevent classes of bugs.

3. The Racket assignment simulates a sum “type” for gifts (flowers, plushies, candy) by defining products for
each and testing types at runtime. A Rust version can improve by defining the sum type directly. Students
should spend class time writing ill-typed sum expressions and inexhaustive cases to learn about type-
checking for sums. This hands-on activity should emphasize that Rust’s typechecker helps them meet

28



their goals by automatically catching certain bugs early. Students should also practice the data layout for
tagged sum types, reinforcing the distinction between static typing and runtime tags.

4. The Racket assignment introduces the first inductive data structure, lists, with simple list-processing func-
tions. The Rust version can use box-and-pointer diagrams to teach students about indirection. Constant
and mutable references will be introduced. In class, students write cyclic lists and use-after-free bugs
on lists, then learn why these programs do not typecheck. This reinforces the learning goal of providing
preliminary exposure to core systems concepts.

5. The Racket assignment introduces binary search trees (BSTs). The Rust assignment can be expanded
to include binary trees without the BST invariant. Then, students can be shown box-and-pointer diagrams
for trees with extreme aliasing (e.g., a linear-space representation of self-similar tree of exponential size,
displayed in Figure 1 on page 3). This reinforces the goal of preliminary exposure to systems concepts.
Students should step through seemingly-correct code for aliased trees on paper, see incorrect results, and

Figure 1: Tree-shaped data structure, both with aliasing (left) and without aliasing (right).

learn affine types prevent creating the aliased tree. Students will write functions with multiple recursive
calls on different subtrees, and observe how affine types help prevent recursion blunders (e.g., applying
both recursive calls of a destructive function on the same subtree).

6. The Racket assignment practices the higher-order functions (HOFs) map and filter on lists using a
dataset of American rivers. To reduce Amerocentricity, a new version can expand the data set to non-
American rivers. All HOFs in the assignment are non-destructive. For simplicity, they should remain
so. Class time will be used to discuss the subtleties of destructive HOFs, and in particular, closures
that can be used only once. The runtime representation of closures will not be treated as core material,
but will be explained in supplementary material. The Racket assignment uses sentinel return values
for list-searching functions in the not-found case. Option types will be introduced as an alternative, the
billion-dollar mistake [11] of null references will be described, and students will discuss option types. This
supports the goal of preliminary exposure to big ideas in programming language theory.

7. The Racket assignment models an idealized email system, where messages are sent between users
by moving them between lists representing mailboxes. The Rust version will use physical mail as an
introductory metaphor for ownership-checking: if I put a letter it someone else’s mailbox, I no longer have
it. Like many objects, letters can be deep-copied, but copying a physical letter is time-intensive, just as
deep copies are compute-intensive. In-class discussion will cover privacy and types: is it possible to
ensure that only the intended recipient reads the mail?

29



4 Opportunities for Success and Failure

This section discusses major points of departure between the Racket and Rust courses, to identify potential
risks and rewards of using Rust.

4.1 Syntax and Types as Friend or Foe

Reported student motivation for learning core CS concepts at WPI is high [10]. As a corollary, instructors
should be careful with language features that could become viewed as obstacles to the core concepts. In the
author’s anecdotal experience, students often report that Racket’s Lisp-style usage of parentheses confuses
them, specifically that they are unsure how many pairs of parentheses each expression should have and where
each closing parenthesis should appear. In prior experience teaching Standard ML-based courses, students
reported similar issues with parentheses and the common appearance of type errors whose purpose was not
made clear to them.

In contrast to Lisp-style parentheses syntax, Rust emphasizes an infix syntax which significantly overlaps with
the most common procedural languages. This is potentially helpful in reducing syntactic because 83% of first-
year WPI CS students have some prior programming experience [10], but its efficacy should be tested.

The teaching of types requires additional care. To maintain a positive classroom attitude, I cast well-typed
programs as rewards instead of casting type-errors as punishments. Firstly, the coursework is designed to
highlight specific classes of common errors which static types rule out. This message is reinforced by having
students hand-write and hand-evaluate buggy, ill-typed programs, rather than asking students to trust that the
type-checker improved their code. Having students intentionally write ill-typed code also normalizes type er-
rors as a standard step in the development process, making clear that they are not a personal failing. Special
attention must be paid to the readability of type error messages. To avoid bias in favor of instructor intuition,
readability should be researched with empirical studies of novice Rust programmers. DrRacket’s error mes-
sages were developed with a similar approach [16, 17], which could be emulated. If classroom use mandates
domain-specific messages, the VSCode plugin could be customized for classroom use.

4.2 Mature and Immature Tooling

Students do not interact with languages in the abstract, they interact with languages’ tools. Thus, tooling is
essential to shaping students’ first impressions.

CS 1101 uses DrRacket [8], a specialized IDE for educational Racket. DrRacket installs via a standard graphi-
cal installer. CS 1101 emphasizes using the built-in help center to learn the usage of individual functions. The
DrRacket help center can be optimized for individual courses, i.e., the student can pick the language fragment
they wish to use and then restrict the help to show only relevant functions for their fragment. IDE-provided feed-
back include display of variables’ binding sites, jumping to code from error messages. In addition to breakpoint
debugging, the DrRacket stepper displays step-by-step evaluation traces for a pure fragment of the language.
DrRacket is a direct descendant of the DrScheme [9] editor for Scheme. Both DrRacket and DrScheme are
targeted at educational use.

Installing a full Rust development process is a multi-step process. Visual Studio Code (VSCode) provides a
featureful graphical editor, but Rust must be installed separately, as are Rust extensions to VSCode, of which
several exist [23, 5]. The crates package manager may need to download additional dependencies for each
program. A Rust version of CS 1101 should provide a one-step GUI installer that installs Rust, VSCode, a Rust
extension for VSCode, and all crates used in the course. This prevents installation from being a barrier to entry.

VSCode’s counterpart to a help center is IntelliSense, which supports name-completion, jumping to definitions,
error highlighting, and display of documentation. Rust supports IntelliSense. IntelliSense should be taught
explicitly and documentation should be provided for all starter code. VSCode supports traditional breakpoint-
style debugging, instead of a step-by-step display of operational semantics. Mutable state is crucial in Rust,
thus breakpoint debugging may be preferable.

30



VSCode has recently received media attention [24] as a popular IDE. Students should be encouraged that
VSCode is a skill they can use in their careers.

4.3 Relevant and Irrelevant Languages

In the instructor’s anecdotal experiences teaching Racket and Standard ML, students frequently express con-
cerns that neither is widespread in industry. Because many WPI CS majors pursue computing careers [10],
these concerns are well-founded. I outline potential instructor responses.

1. I could argue that language choice should be picked to optimize learning, not applicability [22]. I do not
make this argument because I do not yet have data supporting a given language choice.

2. I could argue that language choice should be picked on usefulness in students’ career, because this is
motivating [10]. I do not make this argument because none of Rust, Racket, or Standard ML are the
world’s most popular language, though Rust ranks highest at 22 according to TIOBE [27].

3. Instead, I argue that in the absence of conclusive data, I should choose a language which has potential
on both fronts, which helps produce research data to guide future curricula. Rust’s potential to teach CS
concepts is outlined in Section 3: in particular, its strong type system forces students to engage with the
concepts that type system embodies. Its industrial potential is highlighted by user base growth [27].

5 Path to Implementation and Conclusion

Introductory courses are large and often slow-changing, so a complete vision for Introductory Rust must include
a path toward implementation, outlined here. The path toward implementation, like the paper overall, is guided
largely by my personal experience. I do this because although the literature on introductory programming
courses is extensive [4, 6, 19, 21, 14], it has not yet addressed the tradeoffs of using Rust in a course nor the
best ways to implement a Rust course specifically.

We should the lack of direct prior work as a challenge, working with CS Education researchers to rigorously
study Rust’s advantages and disadvantages regarding learning outcomes and student satisfaction, with partic-
ular attention to the perspectives of marginalized students.

My own institution is well-positioned for such research, though not uniquely so. My course, like many, has
multiple lecture sections. Multi-lecture courses are an ideal place for empirical research. I propose courses
where each section uses different languages to enable comparison. Differences among instructors can be
compensated by comparing the Rust instructor’s student feedback against the same instructor’s feedback in
previous Racket-based iterations. Because WPI uses a 7-week term, only 7 weeks’ material need revision.
Likewise, instructors elsewhere should exploit any local opportunities to pilot short-format courses.

Introductory courses deserve serious research even before initial implementation. In this, instructors should
acknowledge that students know things we do not. Undergraduate researchers should be used to collect
formative feedback from classmates to identify strengths and weaknesses of proposed courses. For those of
us whose institutions require student capstone projects, we can advise this research as a capstone.

In conclusion, the choice of introductory language should never be taken lightly. However, a comparison of
Rust against my current choice of Racket shows clear opportunities regarding bug-catching, text editor choice,
career impact, and community. As educators, we must follow through with a software infrastructure that allows
this potential to be realized for our students.

Acknowledgments

Thanks to Matthew Ahrens at WPI for extensive feedback on a draft.

31



References

[1] ACM and IEEE. Computing curricula 2020: Paradigms for global computing education, 2021.

[2] Albert Bandura. Personal and collective efficacy in human adaptation and change. Advances in psycho-
logical science, 1, 1998.

[3] Hugh Burkhardt and Alan H Schoenfeld. Improving educational research: Toward a more useful, more
influential, and better-funded enterprise. Educational Researcher, 32(9):3–14, 2003.

[4] Chen Chen, Paulina Haduong, Karen Brennan, Gerhard Sonnert, and Philip Sadler. The effects of first pro-
gramming language on college students’ computing attitude and achievement: a comparison of graphical
and textual languages. Computer Science Education, 29(1):23–48, 2019.

[5] The RLS Developers. Rust support for Visual Studio Code. https://github.com/rust-lang/
vscode-rust. Accessed Aug. 15, 2022.

[6] Onyeka Ezenwoye. What language?-the choice of an introductory programming language. In 2018 IEEE
Frontiers in Education Conference (FIE), pages 1–8. IEEE, 2018.

[7] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. How to design pro-
grams: an introduction to programming and computing. MIT Press, 2018.

[8] Robert Bruce Findler. DrRacket: The Racket programming environment. Racket Language Documenta-
tion, 2014.

[9] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul
Steckler, and Matthias Felleisen. DrScheme: A programming environment for Scheme. Journal of Func-
tional Programming, 12(2):159–182, 2002.

[10] Center for Evaluating the Research Pipeline. Data buddies survey 2020 department report. Computing
Research Association, 2021.

[11] Tony Hoare. Null references: The billion dollar mistake. QCon London, 2009.

[12] Karyn L Lewis, Jane G Stout, Noah D Finkelstein, Steven J Pollock, Akira Miyake, Geoff L Cohen, and
Tiffany A Ito. Fitting in to move forward: Belonging, gender, and persistence in the physical sciences,
technology, engineering, and mathematics (pstem). Psychology of Women Quarterly, 41(4):420–436,
2017.

[13] David Liben-Nowell and Anna N. Rafferty. Student motivations and goals for CS1: themes and variations.
In Larry Merkle, Maureen Doyle, Judithe Sheard, Leen-Kiat Soh, and Brian Dorn, editors, SIGCSE, pages
237–243. ACM, 2022.

[14] Andrew Luxton-Reilly, Ibrahim Albluwi, Brett A Becker, Michail Giannakos, Amruth N Kumar, Linda Ott,
James Paterson, Michael James Scott, Judy Sheard, and Claudia Szabo. Introductory programming: a
systematic literature review. In Proceedings Companion of the 23rd Annual ACM Conference on Innovation
and Technology in Computer Science Education, pages 55–106, 2018.

[15] Shing Lyu. Welcome to the World of Rust, pages 1–8. Apress, Berkeley, CA, 2020.

[16] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. Measuring the effectiveness of error mes-
sages designed for novice programmers. In SIGCSE, pages 499–504, 2011.

[17] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. Mind your language: on novices’ interactions
with error messages. In SPLASH Onward!, pages 3–18, 2011.

[18] Junya Nose, Youyou Cong, and Hidehiko Masuhara. A DSL for providing feedback on htdp-based pro-
gramming. In TFPIE, 2021. Submitted. Accessed via ResearchGate.

32



[19] Kris Powers, Paul Gross, Steve Cooper, Myles F. McNally, Kenneth J. Goldman, Viera K. Proulx, and
Martin C. Carlisle. Tools for teaching introductory programming: what works? In Doug Baldwin, Paul T.
Tymann, Susan M. Haller, and Ingrid Russell, editors, SIGCSE, pages 560–561. ACM, 2006.

[20] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani L. Peters, John Homer, and Maxine S.
Cohen. Metacognitive difficulties faced by novice programmers in automated assessment tools. In Lauri
Malmi, Ari Korhonen, Robert McCartney, and Andrew Petersen, editors, ICER, pages 41–50. ACM, 2018.

[21] Norman Ramsey. On teaching How to Design Programs: observations from a newcomer. In Johan Jeuring
and Manuel M. T. Chakravarty, editors, ICFP, pages 153–166. ACM, 2014.

[22] Rosemary S Russ. Epistemology of science vs. epistemology for science. Science Education, 2014.

[23] Ferrous Systems. rust-analyzer. https://rust-analyzer.github.io/. Accessed Aug. 15, 2022.

[24] Darryl K. Taft. Microsoft VS code: Winning developer mindshare.
https://www.techtarget.com/searchsoftwarequality/news/252496429/
Microsoft-VS-Code-Winning-developer-mindshare, 2021. Accessed Aug. 14, 2022.

[25] Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Pasareanu. SyRust: automatic testing of rust
libraries with semantic-aware program synthesis. In Stephen N. Freund and Eran Yahav, editors, PLDI,
pages 899–913. ACM, 2021.

[26] Rust Team. Code of conduct. https://www.rust-lang.org/policies/code-of-conduct, 2022.
Accessed Aug. 14, 2022.

[27] TIOBE. TIOBE index. https://www.tiobe.com/tiobe-index/, 2022. Accessed Aug. 14, 2022.

[28] Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. Oxide: The essence of Rust.
CoRR, abs/1903.00982, 2019.

[29] Chris Wilcox. The role of automation in undergraduate computer science education. In SIGCSE, pages
90–95, 2015.

33

View publication stats

https://www.researchgate.net/publication/366812272

