
Discussion 

 Since there is evidence to support the notion the Machine Learning algorithm is 

largely successful and the shorthand itself is shown to a significant advantage when 

measuring by Speed Score, it can be asserted the Digital Shorthand Key serves as an 

optimal method for faster transcription. The p-values significantly less than 0.05 also 

reinforce the ideas that the Machine Learning model is successful almost 90% of the time 

and that the chance of Gregg Shorthand outdoing the Digital Shorthand Key in terms of 

Speed Score is less than 1%. Hence, the Digital Shorthand Key is a reliable and efficient 

medium for quickly transcribing text that embodies an image recognition and English word 

mapping elements. 

 Nevertheless, specialized equipment, such as Steno Machines, also serve as a 

popular alternative for those looking to write at high speeds at the price of extra equipment 

(MacMillan, 2016). However, the Digital Shorthand Key aims to provide an equivalent free 

for all and available at a moment’s notice. 

 The Digital Shorthand Key also proves itself to be an improvement upon a Pitman 

Shorthand recognition system. The study focused on interpreting Pitman shorthand 

achieved a loss of about 10%, proving to be a formidable competitor, but the authors also 

conceded there were a reasonable number of common errors among their shorthand 

experts (Ma et al., 2008). From analyzing the mistakes, the researchers also suggested a 

variety of amendments to the shorthand to make it more user friendly. While Machine 

Learning algorithms can be applied to any shorthand, it takes a new more efficient 

shorthand to surpass its competitors. 



 This project itself is an application of the observation made in a linguistics study. 

The study published on ScienceMag conducted an experiment in which they compared 

languages in terms of information density and determined that there was indeed sizeable 

variance across languages (Coupe et al., 2019). 

 Likewise, studies and articles on Unicode also detail how the repetition in language 

can be leveraged in text file compression (Studený, n.d.). In terms of Unicode, it creates a 

HashMap-like dictionary of shorter terms to represent strings, longer terms. 

 The model was trained exclusively using common English words in famous 

linguistic-used stories and the most common words in the English lexicon. When the model 

is confronted with new words or slang it may not recognize, it may be comfortable 

recognizing characters that it has gotten used to and assume incorrect meanings. In this 

scenario, the accuracy of the model would be an overestimate. 

 Likewise, the loss of the model would fluctuate greatly even among a smaller range 

of ~5,000 steps. This allows from interpretations of the total loss to be anywhere from 0.5 

to 0.13. In this regard, the loss chosen to be reported, 0.113, would be an underestimation 

of the model’s abilities and success. 

 Similarly, errors within the application will always persist too. Ambiguity in 

language found by computers is one of the biggest problems present whenever computers 

meet language and at the core of Natural Language Processing (Nadkarni et al., 2011). A 

future avenue of study would be to reduce the little amount of ambiguity this system is 

bound to face. This can be done via variety of methods, name some low-level Natural 

Language Processing tasks such as Part-of-Speech assignation. 



 The ontology-based parser from Busch serves an excellent example of an existing 

patent using this step in Natural Language Processing methodology (Busch et al., 2001). 

The invention takes input, translates it phonetically, and tracks the part of speech to create 

a more fluid parser for typing applications. This project builds upon this work by using this 

element of the methodology to solve another text input problem, albeit not via text but 

rather shorthand. 

 To understand how this solution may impact this product, look at the word 

identification process once again. This method of going back from the Digital Shorthand 

Key via an organized dichotomy is like how researchers at Google used a new Artificial 

Intelligence to dramatically increase the translation success of words and phrases (Mataic, 

2016). In Google program, they split all the words up into trees with different subbranches. 

For example, you would find the word “dog” on the “pets” branch on the “animals” branch 

on the “living” branch. In the case of the Digital Shorthand Key, however, the twelve 

characters in the Digital Shorthand Key would see branches less like the example on the 

left, Google’s semantic tree, and more like the example on the right, representative of this 

project and shows the possible interpretations for the letters t and o in the word. 
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The following two trees show how a team from Google classifies words (left) and how the 

Digital Shorthand Key identifies words. 

Since “to,” “two,” “too,” and “though” are going to typically found in different parts of 

sentences, some of these context clues embedded naturally into language may also help 

solve this current error. These are the same context clues people apply when distinguishing 

homophones verbally. As of right now however, this is a minor problem as the algorithm is 

designed to allow the user to choose from multiple possible interpretations. 

 In all, the system provides a quick and easy way to communicate information 

through this model majority of the time. It provides a quantitative metric of the 

effectiveness of the trained model and a new medium for faster digital transcription for 

everyone in all environments. The digital shorthand system can help people save time 

writing on touchscreen devices such as iPads, write without the traditional keyboard 

(easier for the visually impaired), and standardize or facilitate shorthands in the medical 

industry. 

 


