USING MATH MODELING TO **IDENTIFY AND CORRECT** GERRYMANDERING

By: Ravena Arun

Design Matrix

	Chatterjee et al.'s Model	Liu et al.'s Model	Guest et al.'s Model	Correction Model
Equal population	\bigcirc	\oslash	\oslash	\oslash
Geographic symmetry	\oslash			\oslash
Compactness	\bigcirc	\odot	\oslash	
Preservation of historic district centers	\oslash		\oslash	
Just representation of minorities				\oslash

Discussion and Conclusion

Next Steps

- Continue developing the Correction Model; consider the addition of other factors
- Consult with experts in the field: Chatterjee, Guest, Liu, etc.
- Develop accessible app or website to view the extent of
- gerrymandering and how to fix it when given the user's region
- Gerrymandering and unfair redistricting has devastating consequences on minority communities communities
- One of the primary purposes of retaining the archaic electoral system is to counteract the majority rule and provide just representation to minorities
- A mathematical model to identify and correct gerrymandering without human bias could revolutionize the redistricting process
- This research aims to protect the rights of minorities and ensure everyone's fundamental right to vote has an equal impact

- d Press. (2024, March). Wisco
- ssional redistricting challenge 00144529
- Chatterjoe, T., DuoGopta, B., Palmieri, L., Al-Qarashi, Z., & Sidropoulos, A. (2018)
- mandering: Can math an
- est, O., Kanayer, F.J. & Love, B.C. Gerrymandering and ce of Computational Social Science, 2, 119-131 (2019), https://doi.org/10.1007/s42001-019

 - s/work/wp/2015/03/03/this-i
- Lin, H., Erdegan, A., Lin, R., & Tsuo, H.S. J. (2020). Mathematical models of politics raests. Computers & Industrie

Background

- Gerrymandering is a political issue that describes the manipulation of electoral borders to work in the favor of, or against, a specific party
- It is deeply undemocratic, but without objective evidence, action cannot be taken against it (Kirschenbaum & Li, 2021)
- · There are two types of gerrymandering: packing and cracking
- Packing describes grouping several voters of the same party in one district to ensure that one district wins by a tremendous margin, but the surrounding districts are less competitive (Jones, 2018)
- Cracking also makes districts less competitive, but it . does this by splitting a party's voters across several districts, making them a minority in each one (Jones, 2018)
- Section 2 of the Voting Rights Act states that redistricting to intentionally pack or crack minorities is strictly prohibited (Section 2 of the Voting Rights Act, 2015)

Existing Models

- . Many use the efficiency gap, a mathematically accurate measure of the quantity of "wasted votes" (Stephanopoulos & McGhee, 2015)
- Gerrymandering is a combinatorial optimization problem so the solution is usually a rapid randomized algorithm (Chatterjee et al, 2018)
- Several accurate models, but they only account for compactness, preserving old district cores, and geographic symmetry
- · They do not consider just representation of minorities

Methodology					
Define the Problem	î				
Make Assumptions					
Define Variables	C _{itt} i				
Solve	Ê				
Analyze the Solution	\mathbf{Q}				

Gerrymandering Scores for Low (1), Medium (2), and High (3) Datasets 0.35 03 0.25 0.2 0.15 0.05

2

3

- Histogram of Gerrymandering Scores after 20 runs 7 5 4
 - 3 2 1

- Engineering, 145, 106265. https://doi.org/10.1016

Identification Model Gerrymandering Score =

 $(\alpha \times EG) + (\beta \times PVDA) + (\gamma \times PVDB)$

EG = |(Party A's wasted votes - Party B's wasted votes)/Total votes| PVDA = |(Total Party A votes/Total votes) - (Districts Party A won/ Total districts)

PVDB = |(Total Party B votes/Total votes) - (Districts Party B won/ Total districts)

> Weights a = 50% 0.50 β = 25% 0.25 y = 25% 0.25

or geographical factors and do not account for fair representation of minorities, the purpose of the electoral college system.

Phrase 2

The goal of this project is to develop objective measures to identify and correct minority-targeted gerrymandering.

Advisor: Kevin Crowthers, PhD.

- - **Case Study: Connecticut** Read Total

References

ing challenge - POLITICO, POLITICO; Politice

- 7.4400x.https://doi.org/10.48550/ansix.1804.10577
- m. C. (2015). This is the best explanation of a Rashington Port. https://www.washingtonpost.com/new
- the best explanation of genymandering you will ever see knes, M. (2018). Translational Applied Demography: Packing, Crac

