BACKGROUND

Plastic packaging made of traditional plastics pollutes the environment (Rosenboom et al., 2022).

PLA (polylactic acid) is a leading biodegradable alternative – but its mechanical/thermal properties are lacking (Gbadeyan et

Clay nanoparticles increase strength of plastics (Uddin et al., 2024).

Novel PLA Nanocomposite Bioplastic For Use In Packaging

by RAIHAN AHMED

Purpose

How do different forms of clay nanoparticles work together to affect the thermal and mechanical properties of polylactic acid?

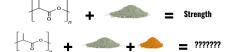
Hypothesis

Different types of clay nanoparticles will increase mechanical strength and stiffness, as well as thermal resilience of PLA — beyond that of composites with each individual type and of pure PIA.

ANALYSIS

Simulation reached equilibrium in terms of energy.

Young's Modulus of PLA matched values from previous experiments.


Young's Modulus vs. volume fraction of SiO2 forms a positive **trend**

CONCLUSIONS

If the simulation is accurate, silicate nanoparticles may improve Young's Modulus of **PLA**.

Simulation is **grounded** in reality.

INNOVATION

- Molecular dynamics simulations accurately predict properties of polymers (Nikzad et al., 2024).
- Can they save time/resources?

METHODS

Figure 1: Effect of volume fraction

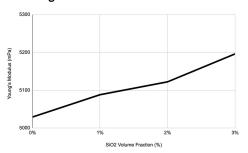


Figure 2: Simulation Equilibrium

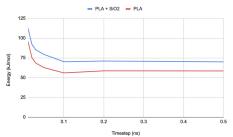


Table 1: Young's Modulus of PLA

Young's Modulus (mPa)	
Experimental (Petsiuk et al., 2022)	Simulated
1550	1491

Improve MD Create Simulation bioplastics Perform tests Analyze results

IMPORTANT REFERENCES

- Rosenboom, JG., Langer, R. & Traverso, G. (2022). Bioplastics for a circular economy. Nat Rev Mater, 7, 117-137, https://doi.org/10.1038/s41578-021-00407-8
- Uddin, N., Hossain, T., Mahmud, N., Alam, S., Jobaer, M., Mahedi, S. I., Ali, A. (2024, July 4). Research and applications of nanoclaye: A review. SPE Polymers, 5(4), 507-535. https://doi.org/10.1002/si2.01046

Use results to adapt
MD Simulation

- Lightfoot, J. C., Castro-Dominguez, B., Buchard, A., & Parker, S. C. (2023). A molecular dynamics approach to modelling oxygen diffusion in PLA and PLA clay nanocomposites. *Materials Advances*, 4(10), 228–2291. https://doi.org/10.1039/D3MA001581
- Nikzad, M.K., <u>Aghadavoudi</u>, F. & Ashenai Ghasemi, F. (2024). Thermo-mechanical properties of silica-reinforced PLA nanocomposites using molecular dynamics: The effect of nanofiller radius. J Pohym Res, 34(44), https://doi.org/10.1007/s10965-024-03873-2
- Gbadeyan, O.J., Linganiso, L.Z. & Deenadayalu, N. (2022, June 18). Thermomechanical characterization of bioplastic films produced using a combination of polylactic acid and bionano calcium carbonate. Sci Rep. 12(15388). https://doi.org/10.1038/s41589-022-20004-1