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1 Overview and structure
This text uses several complementary, spiral approaches.

e Models of physical problems motivate differential equations. The dif-
ferential equations demand analytical, numerical, and graphical tools
for their analysis. Interpreting the results of the analysis leads back
to the physical problem, which then demands deeper analysis or better
models that themselves require more sophisticated analysis.

These distinct steps are often identified explicitly by section titles or
by marginal labels like Model, Analysis, or Interpretation. For exam-
ple, subsections 2.1.3, 2.1.4, and 2.1.5, p. 30-34, successively derive
the simple population model, analyze it, and interpret the analysis;
the subsection titles are A Model, Analysis, and Interpretation, respec-
tively. Marginal notes on p. 2-3 identify the modeling, analysis, and
interpretation steps for the projectile model considered there.

e Most mathematical ideas are introduced intuitively before they are de-
fined formally, so that definitions can arise naturally, rather than ap-
pear as arbitrary rules.

e To give students the experience of generalization, common methods
and ideas are introduced in succession for first-order scalar equations,
then for second-order equations, then for first-order systems. For ex-
ample, characteristic equations appear in all three settings, and each
reappearance of the problem of solving a constant-coefficient, homoge-
neous, linear equation turns back to a previous, simpler problem for
guidance in attacking the newer, more complex problem.

Of course, the mathematician in me is impatient to show the
power of the general approach. However, I have found that such
haste keeps all but the best students from seeing the power of
generalization. Climbing the mountain step-by-step gives a better
appreciation for the view than traveling to the summit for the first
time via helicopter!

Analytical, graphical, and numerical tools are all introduced early in an-
ticipation of later refinement, extension, and generalization. Chapter 1, Pro-
logue, surveys this mix, giving a sample of modeling, of finding an analytic



solution of an initial-value problem via separation of variables, of a numeri-
cal approximation using Euler’s method, and of direction fields and solution
graphs. Subsequent chapters are more specialized, as summarized in table 6.

This approach could be viewed as the “Rule of Three Plus One”, the
analytical, graphical, and numerical perspectives augmented by the
physical. See P. W. Davis, Asking Good Questions about Differential
Equations, College Math. J., 25(5) 1994, 394-400.

2 Learning aids in the text

Learning aids built into the text include the following;:

2.1 Exercises

Exercises appear at the end of every section (with the exception of the sec-
tions in chapter 1, Prologue), and a comprehensive set of exercises concludes
every chapter. In total, there are more than 1,350 exercises, ranging from
trivial mechanical exercises to difficult derivations, proofs, and analyses.

Many of the more challenging exercises provide too little data or too much
data. Or they ask for explanations or plausibility arguments or similarities or
differences. All are substantial departures from the “plug 'n’ chug” exercises
with unique answers to which many students are accustomed. In recompense,
some students will also discover that mathematics is much more interesting
than they thought.

2.2 Exercise guides

Exercise guides at the beginning of each set of exercises suggest particular
problems to which students can turn in order to practice certain skills or to
improve their understanding of particular ideas. To use these simple tables
effectively, students must understand the vocabulary of the subject, and they
must connect the vocabulary to what they know.

Consequently, the ostensible purpose of these guides—mapping course
concepts into exercises—is realized only for those students who understand
the elements in the domain of this mapping. To use a different metaphor,
students must distinguish among the trees in the forest before an exercise
guide becomes a useful map through it. Hence, the subversive purpose of



the exercise guides is fostering understanding through mastery of vocabu-
lary. Students who know enough to solve the inverse problem—using an
exercise guide to determine which ideas apply to a given problem—already
understand enough to make the exercise guide irrelevant.

I sometimes suggest that students review for a test as follows: For
each of the techniques or concepts listed in the left-hand column of
an exercise guide, answer such questions as, “Is this a method or a
concept? If it is a method, when it is applicable and how does it work?
If it is a concept, how is it defined? When and why is it useful?”

2.3 Stop and think

Stop and think questions and challenges are sprinkled throughout the text
to provoke thought while students are reading, to support teaching assistants
or others who are conducting discussion sections, and to provide supplemen-
tary homework or in-class writing assignments. For easy reference, each of
the more than 380 Stop and think’s is individually numbered within each
chapter. They are designed to help students learn to read mathematics the
way mathematicians do, with pencil in hand and with “brain open”, as Paul
Erdos might have said.

2.4 Solutions to exercises

Solutions for most odd-numbered exercises are provided on pages 644—678.
Solutions are also given for an occasional even-numbered exercise whose so-
lution parallels that of an odd-numbered exercise. Many of these solutions
are given in some detail, as if they were terse examples augmenting the more
than 250 conventional examples that appear in the text.

2.5 Chapter projects

Chapter projects at the end of each chapter are assignments that can be
tackled by teams of two to four students over a period of ten days or so.
These forty open-ended challenges often have several reasonable solutions and
no single really satisfactory solution. (Proofs, of course, are an exception.)
Projects like these can provoke some deep involvement with mathematics, an
experience that many students have never had, as well as requiring careful



oral and/or written communication of the students’ final problem statement,
their analysis, and their results, depending on what you decide to assign.

For additional projects, some suggestions on ways to use projects in
class, and other support materials, visit http://www.wpi.edu/ hein-
rich/odeproj/odeproj.html

2.6 Quick Reference Guide

The four pages on the inside front and back covers and the facing flyleaf
pages contain a Quick Reference Guide to the methods and concepts covered
in the text. It is another tool for getting a view of the forest through all of the
trees. Although this quick summary suffers from omission and simplification,
as does any such condensation, students can challenge themselves to explain
each of these ideas listed there, to construct examples using each of the
methods, and to explain connections among the various entries.

For a quick answer to the canonical question “What will be on the
test?”, put check marks next to the appropriate items on a copy of
the four pages of the Quick Reference Guide and post it on your office
door!

2.7 DMatlab notes

Boxes at various points in the text labeled “MATLAB” pose a question or
suggest an activity that uses MATLAB or the graphical user interface DELAB
(see section 5 below) to illuminate the ideas under consideration.

These are positioned to be unobtrusive but in the right place at the
right time. Ideally, a student is reading next to a computer, visualizing,
exploring, discovering, making notes and thinking deeply about each new
idea as it is encountered. Since the reality is often a bit different, these
computational and visual references are structured so that not completing
them won’t stop the student. Ultimately, students will give these MATLAB
activities the same importance as you do through using them as homework,
as laboratory exercises, as demonstrations in class, and so on.

Many of the homework exercises specifically ask for comparison with or
exercise of a specific tool built into DELAB; e.g., part of an exercise might
ask whether the analytic solution tool in DELAB produces the same solution
formula as undetermined coefficients, say, or whether it produces a general
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solution. Or students might be asked to use DELAB to verify their graphical
or analytic study of a given equation and to comment on the differences.
These kinds of questions are meant to nurture a skeptical understanding of
these computational tools while nurturing good judgment and flexibility in
their use.

3 Syllabus suggestions

Rather than attempt to offer semester-long sample curricula, the following
sections suggest which chapters and sections work best to accomplish partic-
ular ends. From these alternatives, individual instructors can then organize
the particular journey they want their students to take.

3.1 Modeling

This text begins with models and uses them throughout. But few of us have
the time to pursue every model in full detail through the complete cycle of
derivation, analysis, and interpretation. The following are suggestions for
three different approaches, listed in increasing order of course time required.

My own approach is to mix the three approaches, using less and less
class time for modeling and depending more and more on the student
own work as the term progresses. The expectation that students will
assume increasing responsibility for their own learning as the course
progresses is reinforced by class discussions in lecture and recitation
sections, by the homework exercises assigned, and by the questions
posed on sample and actual examinations.

1. “Take my word for it”: Simply state the governing equations, and
perhaps assign reading of the relevant pages from the text, without
further class discussion. This approach is not satisfactory as the only
introduction to mathematical modeling, but it is appropriate once stu-
dents have gained some experience with modeling.

2. Plausibility argument: State the governing equations. Then give a
plausibility argument for the terms in the equation, or lead students
to develop their own arguments through a class discussion, or assign
exercises that require such an argument.



For example, the text only provides a plausibility argument for the
competition equations (2.33-2.34)

/

= y(l—y—e2)
2 = rz(l—z— fy)

in subsection 2.4.3, p. 72. Then exercise 5 of section 2.4, p. 75, guides
students through a step-by-step derivation.

To provoke class discussion that builds intuitive confidence in a model,
consider using Stop and think questions such as 2.21, p. 67, or 2.24
and 2.25, p. 70.

. First principles Mimicking the derivation of the model of vertical
motion in section 1.2, p. 1-5, or the simple population model in sec-
tion 2.1, p. 27-31, introduce and motivate the relevant experimental
facts and observations (e.g., force of gravity is proportional to mass),
introduce the governing physical law (e.g., F' = ma), then derive the
differential equation(s) and initial condition(s).

Many of the models in the text are derived in this relatively care-
ful manner, but I think it a mistake to plod through every single
equation in such detail in class. Instead, some can be derived
and discussed carefully in class, some can be stated with a quick
plausibility argument, and others can rely on students “taking
your word for it.” The text is available for back-up reading as-
signments, and the importance given such reading assignments
will be determined by the homework exercises you assign and the
test questions you ask.

As examples of exercises that support the middle road, a plausibility
argument for a model, consider:

e Chapter 2 chapter exercises, exercise 15, p. 79: An insect pop-
ulation (denoted by y) is being destroyed by an insecticide at a
constant rate d. It is increasing at a rate proportional to the cur-
rent population; the constant of proportionality is g. Which of
the following initial-value problems might be a reasonable model
of this situation? Justify your rejection of each unacceptable
choice.

(a) v + gy =d, y(0) =y
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(b) ¥ —gy =d, y(0) = y;
() ¥ +9y=—d, y(0) = y;
(d) ¥ —gy=—d, y(0) =y
e Section 5.1, exercise 7, p.217: The text derived the model

mx” + kx = k(h(t) — h(0)), £(0) = z;, 2'(0) = v;,

for the forced, undamped vertical spring-mass system. It also
considered a spring-mass system without forcing that was damped
by friction. It obtained the model

ma” + px’ + kz =0, 2(0) = z;, 2'(0) = v;.

In fact, even a freely suspended mass is subject to damping due
to air resistance and internal resistance in the spring. These
damping forces can be modeled as being proportional to velocity
and acting in the opposite direction, just like the force of friction
acting on the mass sliding horizontally.

(a) Compare the undamped, forced model with the damped
model without forcing. Predict what a model of a forced,
damped system would look like.

(b) Verify your prediction by deriving such a model. Specif-
ically, consider the system shown in figure 5.5 and sup-
pose that the mass is subject to air resistance which
is proportional to its velocity and acts in the opposite
direction.

3.1.1 Core models

Several models are used repeatedly in one or more chapters to provide a
common reference point for the introduction and testing of new methods and
ideas. To help you decide how to allocate your time, these core models, their
point of first introduction, and their subsequent appearances are described
below (see p. 12) and summarized in table 1.

As suggested in the preceding section, your options for depth of coverage
range from “Take my word for it.” to deriving each model in painstaking
detail. I advocate the middle ground, plausibility arguments with back-up
reading and homework assignments, in addition to a few complete derivations
and a few models issued by decree from higher authority.
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Core Models

Introduced | Used
Model in section | in sections
Projectile motion
Rock model: v/ = —g¢g 1.2 1.3;3.2; 4.1, 4.4; 6.6
Scalar population
Simple: P' = kP 2.1 3.1-3.2; 4.1-4.3
Emigration: P = kP — FE 2.2.1 3.2-3.3; 4.2-4.4
10.4-10.5
Logistic: P' = aP — sP? 2.2.2 3.2-3.3; 4.1-4.3
Heat flow 2.3 3.1-3.3; 4.1, various
T = —(Ak/em)(T — Tow) exercises in 4.2-4.5
10.4; 10.5, exercise 5
Multi-species population
Predator-prey (2.24-2.25), p. 67 2.4.1 7.1, exercises 2-3
7.2, exercises 12-13
8.1; 8.3, exercises 9, 33
Epidemic (SIR, SIRS) 2.4.2 7.1, exercises 2-3
(2.29-2.30), p. 71 7.2.3; 7.2, exercises 9-11
8.1; 8.3, exercises 9, 26
cover of text
Competition (2.35-2.36), p. 73 2.4.3 7.1, exercises 2-3
7.2, exercises 14-17
8.3, exercise 9
Mechanical oscillators
Spring-mass: 5.1 6.1, 6.4-6.7
mx” + px’ + kx = F(t) 10.5, exercises 6, 10
Pendulum: L#" + gsinf =0 5.2 6.1, 6.5.2, 6.8
7.1-7.2; 8.3
10.5, exercise 9
Steady diffusion
—D(Ad) + (AVe) =0 9.1 9.2-9.3; 11.2
Time-dependent diffusion 9.4 9.5-9.6

OT /ot = kOT?/Ox?

11.5; 11.7, exercise 25

Table 1: Core models used in the text, their point of first introduction, and
sections where they are subsequently used. See the discussion beginning on
page 12 of this manual for more detail.

11



Briefly, the first-order scalar population models (Malthus, emigration, lo-
gistic) and heat-flow derived in chapter 2, Models from Conservation Laws,
appear repeatedly in chapters 3 and 4, which develop numerical, graphical,
and analytical ideas for first-order scalar equations. The simple harmonic os-
cillator (spring-mass model) and the linear and nonlinear pendulum derived
in sections 5.1 and 5.2 are the standard examples in chapter 6, which treats
second-order analytic solution methods and applies numerical methods. The
pendulum and the SIRS (epidemic) system (subsection 2.4.2) motivate phase
plane analysis in chapter 7, Graphical Tools for Two Dimensions, and lin-
earized phase plane analysis in section 8.3, Connections with the Phase Plane
(after sections 8.1 and 8.2 have solved constant-coefficient, homogeneous lin-
ear systems.)

Second-order boundary-value problems, ordinary and partial respectively,
build upon the steady-state diffusion model of section 9.1, Diffusion Mod-
els, and upon the heat equation developed in section 9.4, Time-dependent
Diffusion.

Chapter 10, The Laplace Transform, uses as examples linear first- and
second-order initial-value problems involving population and heat-flow from
chapter 2 and spring-mass systems from section 5.1. Some of the additional
analytic methods of chapter 11, More Analytic Tools for Two Dimensions,
also draw upon the diffusion equations of sections 9.1 and 9.4 for examples
of equations with nonconstant coefficients or singular points.

For more detail, the point of first introduction, and subsequent uses of
the primary models, see table 1 or the following paragraphs. For an overview
of the connections between mathematical ideas and models, see tables 3, 4,
and 5.

First-order scalar population models The simple (Malthusian) model
(P' = kP, section 2.1, p. 27-36), the emigration model (P' = kP — E,
subsection 2.2.1, p. 41-46), and the logistic equation (P’ = aP — sP?
subsection 2.2.2, p. 57-50) are used as the standard examples of first-order
equations that are linear and homogeneous, linear and nonhomogeneous,
and nonlinear, respectively. They are used throughout chapters 3 and 4 to
introduce analytical ideas and methods, numerical methods, and graphical
analyses.

The logistic equation is the standard nonlinear foil to linear equations. In
particular, it is the test bed for more complex graphical analysis (section 3.2,
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Direction Fields and Phase Lines, p. 108-118), multiple steady states and
linearized stability analysis (section 3.3, Steady States, Stability, and Lin-
earization, p. 118-126), the limitations of analytic methods (e.g., separation
of variables does not find the solution P = a/s, example 19, p. 152), and the
significance of uniqueness (example 46, p. 190).

The emigration model, P' = kP — E(t) with E defined appropriately,
motivates the study of the Laplace transform of both the unit step function
and the Dirac delta function in sections 10.4, Ramps and Jumps, p. 546-553,
and 10.5, The Unit Impulse Function, p. 556-559.

Heat-flow model The heat-flow model 7" = —(Ak/em)(T — Tou) of sec-
tion 2.3, p. 5661, is the first-order, linear, nonhomogeneous alternative to
the emigration model P’ = kP — E. It appears throughout chapters 3 and
4 to illustrate numerical methods, steady states, and the various analytic
solution methods.

Although its derivation involves possibly elusive notions like energy, ther-
mal conductivity, and specific heat, it is a natural candidate for a plausibility
argument:

The temperature of the body falls if it is hotter than its surround-
ings (T > Tout)- The rate of decrease of temperature increases if
there is more surface area A to transfer heat energy or if thermal
conductivity k is larger (i.e., if insulation is poorer).

The concept of heat flow appears again in section 9.4, Time-dependent Dif-
fusion, p. 460-467, where the heat equation T; = kT, is derived.

Multiple species models In varying degrees of detail, section 2.4, p. 65—
73, derives three standard multiple-species models. They are predator-prey
(fox-rabbit),

F, = —(dF — OéR)F
R = (bgp— BF)R,

epidemic (SIRS),
S = —bIS+g(P—-S—-1)
I' = bIS—rl,
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and competition,
"= y(l-y—ez)
2= rz(l—2z-— fy).

As these models are introduced, the text briefly considers relevant phase
plane and equilibrium ideas.

A detailed study of the phase plane begins in chapter 7, Graphical Tools
for Two Dimensions, using the pendulum model developed in section 5.2.
The SIRS model joins the pendulum in section 7.2, Nullclines and Local
Linearization, p. 343-350, and one of its phase plane diagrams appears on
the cover of the book.

All three multiple-species models appear in the exercises for section 7.2,
Nullclines and Local Linearization, for section 8.1, Basic Definitions: Sys-
tems, and for section 8.3, Connections with the Phase Plane. As appropriate,
these exercises request nullcline analyses and phase plane sketches, or they
request the determination of equilibria and a linearized phase plane analysis
about each. Students can reasonably be expected to complete such exercises,
including providing a physical interpretation of the results, based on a prior
exposure to a plausibility argument for just one of these models, say SIRS.

I usually do not derive any of these systems in class. Rather, I in-
troduce them as needed to illustrate a point, providing a plausibility
argument for the terms in each model when they are introduced.

Oscillatory models The classic spring-mass harmonic oscillator equation
mz” + pz' + kx = F(t) and its equivalent first-order system are derived
in section 5.1, p. 203-215, the linear and nonlinear pendulum equations
(LO" + gf = 0, etc.) and their equivalent first-order systems in section 5.2,
p- 219-221. The linear spring-mass model is used extensively in chapter 6
Analytic Tools for Two Dimensions, which develops the usual second-order
analytic solution methods and applies them to analyze the behavior of these
systems.

The nonlinear pendulum equation L#"” + pf’ + g sin # = 0 is the nonlinear
foil to the simple harmonic oscillator for the study of equilibria, linearization,
nullclines, stability, etc. It and its linear relative are used repeatedly in
section 6.8, Linear versus Nonlinear, p. 321-325, in section 7.1, The Phase
Plane, p. 334-339, in section 7.2, Nullclines and Local Linearization, p.
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343-350, and in section 8.3, Connections with the Phase Plane, the study of
linearized phase plane analysis.

Diffusion models, ordinary and partial The stationary diffusion equa-
tion with convection but no source, —D(A(z)c (z))' + (A(x)V (x)c(x)) = 0, is
derived in section 9.1, Diffusion Models, p. 428-433. Derivations of various
thermal analogs are requested in section 9.1, exercises 9—14. Diffusion models
provide the examples used in sections 9.2, Boundary-value Problems: Ana-
lytic Tools, and 9.3, Boundary-value Problems: Numerical Methods. The
equation for diffusion in a circular domain (e.g., example 2, p. 432) is used
in section 11.2, Cauchy-Euler Equations, as an example of such an equation.

The heat equation 9T/t = kOT?/dx? is derived in section 9.4, Time-
Dependent Diffusion, to provide the motivating example for the two subse-
quent sections, 9.5, Fourier Methods, and section 9.6, Initial-Boundary-Value
Problems: Numerical Methods. Separating the heat equation on a circular
domain also provides an example of a Bessel equation for section 11.5, Reg-
ular Singular Points.

3.1.2 Other categories of models

A number of other models are introduced as well, but their use is localized
or confined primarily to exercises or to projects.

The one exception to local use is RLC circuit equations, which are an-
alyzed in separate sections as indicated in table 2. These analyses parallel
those for the two mechanical oscillators—spring-mass systems and the lin-
earized pendulum. RLC models included for those who want to emphasize
electrical models, but they can be omitted entirely without difficulty.

3.1.3 Maximal modeling

Even if you commit to covering every model in the text (and that’s a lot!),
you won’t want to derive every single one in lecture in complete detail. In-
stead, shift more and more of the responsibility to the students as the course
progress by using the approaches (plausibility arguments, “Take my word for
it” followed by reading assignments, etc.) suggested in section 3.1 of this
manual.

With such a balance in mind, a maximal-modeling approach to construct-
ing a syllabus would cover every section listed in the center column of tables
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Other Models

Model

Introduced
in section

Used in sections

Circuits
RC circuits
RLC circuits
van der Pol
Various first-order
Radioactive decay
Mixing
Continuous compound interest
Other single-species
populations
Chemical, biological reactions
Logistic map
Time-delayed logistic
Nonlinear oscillators
Nonlinear springs
van der Pol
Various systems
Autocatalytic reactions
Other predator-prey
Chemostat

2.5, exercises 3—6
5.3
6.10, project 3; 7.3

2.5, exercises 1-2, 11
3.4, exercise 3
2.5, exercise 14

2.5, exercises 15, 19
3.5, project 6

2.5, exercises 8, 13
3.5, project 3
10.7, project 2

5.9, projects 1-2
6.10, project 3; 7.3

7.5, project 1
7.5, project 2
8.6, project 4

6.5.3, 6.7.2; 7.3
7.3

7.3

Table 2: Other models introduced in the text.
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1 and 2 through a lecture, a class discussion, homework problems, or a read-
ing assignment. Such an ambitious undertaking would spill well beyond a
single semester!

3.1.4 Linking modeling to ideas

One corner of the modeling triangle is deriving mathematical statements from
experimental observations and physical laws. Another is using mathemati-
cal concepts—analytical, graphical, and numerical—to analyze the behavior
predicted by the model. The third is interpreting that behavior in light of the
original physical problem. Tables 3, 4, and 5 summarize the mathematical
concepts that are associated with the analysis and interpretation of many of
the models introduced in this text.

From a modeling point of view, the best approach to constructing a syl-
labus is to decide which ideas you regard as most important and which models
are likely to be of most interest to you and your students. Use tables 3, 4, and
5 to strike the balance that is best for you—the left-hand columns of those
tables list models, the right-hand columns list the ideas that are introduced
using those differential equations.

The time you spend in your course with analysis and interpretation is
time in part devoted to modeling and time in part devoted to mathematics.
For many students, seeing mathematics explain physical phenomena is the
most powerful motivation for its study. From that perspective, you might
decide to choose the models you emphasize by the ideas that are exemplified
in their analysis, that is, by selecting solely from the right-hand column of
tables 3, 4, and 5.

3.1.5 My preferences

My own preferences for models to teach are:

e scalar population models (sections 2.1-2.2) because they are simple to
derive, they are easy to understand without much background in the
physical sciences, and they motivate all of the important first-order
analytical, numerical, and graphical concepts,

o the heat-flow model (section 2.3) because it is easy to argue that it is
plausible (although the underlying physics is subtle), it has an intu-
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Ideas Used in Analyzing First-Order Models

Model Section | Ideas used

Projectile motion
Rock model: v/ = —g 1.2 direction field, solution graph
Euler’s method, solution formula

3.2 direction field, solution graph
Scalar population
Simple: P = kP 2.1 direction field, solution graph,
solution formula
3.1 Euler’s, Heun’s methods
3.2 direction field, solution graph,
4.1 general solution
4.2-4.3 | solution formula
Emigration: P" = kP — FE 2.2.1 direction field, solution graph,
steady state, stability
3.2 direction field, solution graph,

phase line
3.3 steady state, stability
4.1 general solution

4.2, 4.4 | solution formula
10.4-10.5 | Laplace transform solution
Logistic: P’ = aP — sP? | 2.2.2; 3.2 | direction field, solution graph,

phase line
3.3 linear stability analysis
4.2 solution formula
4.6 uniqueness

Heat flow
T = —(Ak/em)(T — Tyu) 2.3 direction field, solution graph,
steady state, stability,
Euler’s method

3.1 Euler’s, Heun’s methods

3.2 phase line

3.3 steady state, stability

4.1 general solution

Table 3: Analytical, numerical and graphical tools used in analyzing first-
order models. The center column identifies the section in which the ideas
listed in the right-hand column are used to analyze the given model. See

tables 1 and 2 for the section in which each model is introduced.
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Ideas Used in Analyzing Higher-Order Models

Model

Section

Ideas used

Multi-species population
Predator-prey (2.24-2.25), p. 67

Epidemic (SIR, SIRS)
(2.29-2.30), p. 71

Competition (2.35-2.36), p. 73
Oscillators
Spring-mass:
ma" + px' + kx = F(t)

Pendulum: L#" + gsinf =0

van der Pol:
Li" +€e(i* = 1)i' +i/C =0

241
24.2

7.2
24.3

5.1

6.1
6.3-6.5

6.6-6.7

5.2
6.1
6.5, 6.8
6.8
7.1
7.2
8.3

7.3

steady state, stability,
Euler’s method

steady state, stability,

phase plane

nullclines, local linearization

steady state, phase plane

solution formula, phase plane,
Euler’s method
general solution
solution formulas (homogeneous:
undamped, overdamped, etc.
solution formulas (nonhomogeneous:
resonance, etc.)
linearization, solution formula
steady state, linearization
solution formula (linear)
steady state, linear stability
phase plane
nullclines, local linearization
linear stability analysis,
phase plane

limit cycle

Table 4: Analytical, numerical and graphical tools used in analyzing higher-
order models. The center column identifies the section in which the ideas
listed in the right-hand column are used to analyze the given model. See
tables 1 and 2 for the section in which each model is introduced. (Continued

in table 5.)
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Ideas Used in Analyzing Higher-Order Models (cont’d)

Model Section | Ideas used
Steady diffusion
—D(Ad) + (AVe) =0 9.2 solution formula
9.3 numerical approximation
(finite differences)
11.2 solution formula
Time-dependent diffusion
OT /0t = kOT? | Dx* 9.5 eigenfunction solution
9.6 numerical approximation
(method of lines),
equilibria
11.5 spatial eigenfunctions
(Bessel)

Table 5: Continuation from table 4 of the list of analytical, numerical and
graphical tools used in analyzing higher-order models. The center column
identifies the section in which the ideas listed in the right-hand column are
used to analyze the given model. See tables 1 and 2 for the section in which
each model is introduced.
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itively obvious stable steady state, and it seems more “real” to most
students of science and engineering,

o spring-mass and pendulum models (sections 5.1-5.2) because these de-
vices are easy to demonstrate in class, they introduce oscillatory phe-
nomena, and they provide a complete foundation for most of the ele-
mentary two-dimensional ideas, particularly linearization and the phase
plane,

e SIRS (or any other multiple species model from section 2.4) because
for beginners the underlying science is simple and the phase plane is
interesting,

o diffusion models (sections 9.1 and 9.4) because are an important class of
boundary-value and initial-boundary-value problems for ordinary and
partial differential equations, leading to important analytical and nu-
merical ideas.

In class, I derive the population models in sections 2.1 and 2.2 (Malthus,
emigration, logistic), argue for the plausibility of the heat-flow model (sec-
tion 2.3), demonstrate a vertical spring-mass system and derive its governing
equation (section 5.1), and derive one of the diffusion models in section 9.1.
I use “Take my word for it”, augmented by a little hand waving and a read-
ing or a homework assignment, to introduce as needed the multiple species
models (predator-prey, SIRS, competition) of section 2.4. The linear and
nonlinear pendulum equations (section 5.2) enter with slightly more cere-
mony and homework emphasis but usually without a formal derivation.

My preferences among the mathematical ideas and methods are

e graphical concepts such as direction fields, phase planes, and sketching
solution graphs from differential equations because they reinforce the
rate of change concepts fundamental to calculus,

e stability and linearization because stability is an intuitive concept with
natural analytic and graphical interpretations, its analysis often re-
quires linearization (perhaps the most ubiquitous process, imperfec-
tions notwithstanding, in science and engineering), and linearization
leads immediately back to the derivative and to Taylor’s theorem.

21



e clementary numerical methods because they have natural graphical in-
terpretations, they involve linearization, they call upon Taylor’s theo-
rem, and their sophisticated descendants are so important in practice,

e clementary analytical methods because they exercise manipulative skills,
they provide a “plug 'n’ chug” refuge for the student struggling with
more difficult open-ended problems, and their limitations illustrate the
importance of understanding. (To paraphrase Peter Hammer, “The
purpose of differential equations is insight, not formulas (or numbers
or graphs).”)

3.1.6 Minimal modeling

For minimal attention to modeling in your course, use part of one lecture
to touch the highlights of the derivation and analysis in chapter 1 of the
rock model, v = —¢g. Then follow the presentation in section 1.3 to use
that simple example to motivate the elementary analytical, numerical, and
graphical concepts to come.

Derive one of the population models, say P’ = kP’ from section 2.1. De-
pend upon plausibility arguments and homework assignments like exercises
20 and 21, p. 79-80, of the chapter 2 chapter exercises for the emigration
(subsection 2.2.1), logistic (subsection 2.2.2), and heat-flow equations (sec-
tion 2.3).

Devote your other in-class derivation to the undamped spring-mass equa-
tion without forcing, mz” + kx = 0 (section 5.1). Leave the linear and
nonlinear pendulum equations (L#” + gf = 0, etc.) to assigned reading of
section 5.2.

Section 5.3, RLC Circuit (equations), and the subsequent analyses of
these equations in subsections 6.5.3 (without forcing) and 6.7.2 (with forcing)
can be omitted entirely.

Diffusion (section 9.1) is really too subtle to explore without a derivation
in class, but the reality of life late in the semester of a minimal-modeling
course is that you are likely to cover boundary-value problems fairly quickly.
Introduce the boundary-value problems developed in examples 1 and 2, p.
432-433, in class and argue that the types of behavior they can support (e.g.,
a linear diffusion profile or circular symmetry) are reasonable.

The heat equation (section 9.4) ought to be derived in class if you are
going to spend time developing the Fourier machinery of section 9.5 or the
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finite difference tools of section 9.6. The depth of coverage will depend upon
your schedule and your students.

3.2 Numerical methods

Euler’s method is introduced quickly in subsection 1.3.4, part of the sur-
vey in chapter 1, Prologue, of some of the major ideas in the text. Euler,
Heun (RK2), and fourth-order Runge-Kutta are covered more completely
in section 3.1, Numerical Methods. Finite difference methods for (ordinary)
boundary-value problems are developed in section 9.3, Boundary-Value Prob-
lems: Numerical Methods, and the method of lines for the heat equation in
section 9.6, Initial-Boundary-Value Problems: Numerical Methods.

There are two goals in these introductions, developing usable if unso-
phisticated numerical tools and building mathematical and computational
intuition in anticipation of deeper study later in the curriculum. Of course,
Euler, Heun, and RK4 are “baby” methods, intuitive building blocks for the
adaptive initial-value methods available via DELAB’s access to MATLAB’s
ode23, oded5, etc. The finite difference method and the method of lines are
in a similar category, pedagogic rather than truly practical without more
sophisticated enhancements.

3.2.1 Overview

The coverage of initial-value methods in section 3.1 is the deepest treatment
of numerical ideas in the text;'the concepts of local error, global error, and
numerical stability are introduced and analyzed at an appropriate level.

For the finite difference methods of section 9.3, accuracy is explored from
two perspectives, the order of the derivative approximations being used and
numerical experiments that study the variation in error with mesh size. No
complete error analysis is given. The treatment of the methods of lines in
section 9.6 is essentially purely formal.

DELAB (see section 5 below) provides GUI-based access to the three
fixed-step initial-value solvers Euler, Heun, and RK4, as well as MATLAB’s
adaptive solvers ode23, ode45, odel13 and its stiff solvers ode23s and odelbs.
It accommodates systems of arbitrary size, permitting easy solution of the
systems of ordinary differential equations generated by the method of lines.
As an alternative to direct use of matrix solver commands in the MATLAB
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command window, it offers simple access to numerical solution of linear al-
gebraic equations to support the use of finite differences.

3.2.2 Maximal numerical methods

Initial-value solvers After the quick introduction to Euler’s method that
is part of the survey in chapter 1, devote three or four days of lecture to a
complete development of fixed-step initial-value solvers:

e Day 1: Subsection 3.1.1, four interpretations of the Euler method: as
path following through the direction field (illustrated by DELAB (see
section 5 below) or other interactive software), as the tangent to an
exact solution curve, as an approximation to the derivative, as the first
terms in a Taylor polynomial. Conclude with examples of accuracy, as
in subsection 3.1.2.

e Day 2: Subsection 3.1.3, Better Methods: Use the geometric inter-
pretation of Euler to motivate a better (second-order) method, Heun
(RK2).

Subsection 3.1.4, Global and Local Error: Use Taylor’s theorem to
analyze the local error in Euler and to demonstrate the superiority of
Heun, one of several possible second-order Runge-Kutta methods.

I believe that the interpretation and analysis of Euler’s method
is one of the great opportunities to illustrate the real value of
Taylor’s theorem. Another is using Taylor as a tool for linearized
analysis; e.g., example 48, section 6.8, p. 325. Taylor’s theorem
appears again in the discussion of finite difference approximations
of derivatives in section 9.3, Boundary-Value Problems: Numeri-
cal Methods.

e Day 3: Subsection 3.1.5, An Even Better Method: Fourth-Order Runge-
Kutta: Wave your hands to the effect that the Taylor series analysis
that leads from Euler to RK2 can be continued (with a lot more alge-
bra) to RK4, one version of which is stated on p. 99.

Subsection 3.1.6, Numerical Stability, introduces a subtle but impor-
tant idea. Certainly, numerical stability is one of the central pillars
of a more mature understanding of initial-value solvers. An effective
classroom approach is an interactive demonstration like that suggested
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in the MATLAB box on p. 101. An excursion into stiffness is irresistible
at this point, but ....

To guide your assignment of exercises that support these lectures, note
that the exercises in section 3.1 come in several varieties, including among
others:

Exercising a method and perhaps finding error, as in exercises 1-6 or
11-12

One-step approximations that emphasize the nature of the underlying
approximation, as in exercises 7-10.

Ezploring variations in error with step size, as in exercises 14—15, 25—

26, 35-42, 45.

Using numerical approzimations to analyze behavior or data, as in ex-
ercises 16-23, 34.

Analytic and geometric interpretations of the methods, as in exercises
27-32.

Efficiency, as in exercises 13(b), 43—44.

For the sake of simplicity, all of the analysis in section 3.1 is presented for
first-order scalar equations. Systems are regarded as a natural extension, as
remarked on p. 103 of the text, and illustrated repeatedly, e.g., example 13,
p- 18, in the quick introduction to Euler’s method in chapter 1, Prologue.

Boundary-value solvers Coverage of finite-difference approximations in
section 9.3, Boundary-Value Problems: Numerical Methods (for ordinary
differential equations), and of the method of lines in Section 9.6, Initial-
Boundary-Value Problems, will require about three days.

Day 1: Subsections 9.3.1, Approximating Derivatives, and 9.3.2, Ap-
proximating Differential Equations: finite differences are introduced
and used in differential equations.

Day 2: Subsections 9.3.3, Incorporating Boundary Conditions, and
9.3.4, Derivative Boundary Conditions. (The latter can be omitted
to save a little time if you are content with only Dirichlet boundary
conditions.)
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e Day 3: (after coverage of section 9.4, Time-dependent Diffusion, and
(optionally) section 9.5, Fourier Methods) Section 9.6, Initial-Boundary-
Value Problems, builds upon the finite difference ideas of section 9.3 to
approximate the heat equation 7; = kT, by the method of lines.

The analysis of the resulting systems of ordinary differential equa-
tions is in part analytic, using the linear systems ideas of section 8.2,
Constant-Coefficient, Homogeneous Systems, to estimate rates of de-
cay, for example, and in part numerical, calling upon the initial-value
solvers Euler, Heun, and RK4 of section 3.1, Numerical Methods, to
find numerical approximations. Such estimates are compared with the
results of the Fourier analysis in section 9.5.

Projects Project 1 of chapter 9 introduces the shooting method, and project
3 of chapter 9 guides students through a simple finite difference approxima-
tion of the Laplacian on a square. Assignment of one or the other would add
additional depth to the study of numerical methods.

3.2.3 Minimal numerical methods

A minimal treatment of numerical methods would quickly introduce Euler’s
method (subsection 1.3.4) as part of the survey presented in chapter 1, Pro-
logue. A day devoted to the geometric interpretation of Euler’s method (sub-
section 3.1.1) and a corresponding geometric motivation of Heun’s method
(subsection 3.1.3) could conclude with a statement of fourth-order Runge-
Kutta (subsection 3.1.5). (“Intuitively, RK4 is better because it is averaging
slopes at several points along the way from ¢ to ¢ + At.”)

The range of exercises supporting initial-value solvers was described pre-
viously on p. 25.

Sections 9.3, Boundary-Value Problems: Numerical Methods, and 9.6,
Initial-Boundary-Value Problems, can be omitted entirely without loss of
continuity.

3.3 Analytical methods

The chapters devoted primarily to analytic methods are chapter 4 (first-
order scalar), chapter 6 (second-order, mostly constant-coefficient), chapter
8 (systems, mostly constant-coefficient), chapter 10 (Laplace transforms),
and chapter 11 (other second-order methods). Boundary-value problems are
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solved in section 9.2, and Fourier methods for the heat equation are devel-
oped in section 9.5, where second-order eigenvalue problems appear as well.
Besides teaching the methods themselves, this coverage is organized to il-
lustrate the process of generalization in mathematics by proceeding from
simpler to more complex problems.

3.3.1 Overview

Chapter 4, Analytic Tools for One Dimensions, surveys some of the basic so-
lution methods for scalar first-order equations. It treats characteristic equa-
tions, undetermined coefficients, and variation of parameters, all to set the
stage for subsequent extensions of these methods.

The characteristic equation method is extended to second-order scalar
equations in sections 6.3—6.4 (real and complex characteristic roots, respec-
tively) and to systems of first-order equations in section 8.2.

The method of undetermined coefficients is extended to second-order
equations in section 6.6. To alter the pattern of generalization, variation
of parameters is extended to first-order systems in section 8.4, then special-
ized to second-order equations in 11.3.

The balance among the analytic methods favors the simpler constant-
coefficient methods because they reveal relatively easily most of the features
of the behavior of solutions of linear equations. Constant-coefficient equa-
tions arise in many models, and they are the natural outcome of linearized
analyses. In addition, the inescapable patterns of generalization (e.g., ex-
tending characteristic equations from scalar to systems) and specialization
(e.g., variation of parameters from systems to second-order) reveal a side of
mathematics that too few students at this level appreciate.

Since numerical (and graphical) methods are introduced very early
in the text, you needn’t fear accidentally encountering an equation
that your students can’t solve because you skipped a certain ana-
lytic method. Such equations always can be analyzed numerically or
graphically (or solved on faith using the analytic (symbolic) tools in
DELAB).

The pattern of introduction of analytic methods is similar for first-order,
second-order, and systems of equations. Basic definitions and concepts ap-
pear in the first section of the appropriate chapter (for scalar equations in
section 4.1, for second-order equations in section 6.1 with the addition of
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linear independence tests in section 6.2, and for systems in section 8.1). Sub-
sequent sections in each chapter develop the requisite solution machinery.

Systems of two first-order equations are the primary focus of chapter
8, Analytic Tools for Higher Dimensions. But the geometric (eigenvector)
perspective used there extends easily and naturally when larger systems are
encountered, as in the treatment in section 9.6 of the method of lines for the
heat equation.

Second-order (ordinary) boundary-value problems are solved analytically
in section 9.2, Boundary-value Problems: Analytic Tools. The heat equa-
tion is solved analytically using separation of variables and eigenfunction
expansions in section 9.5.

Laplace transforms are the subject of chapter 10. They are motivated by
the notion of sampling a solution function in search of rates of exponential
growth or decay (or complex rates signifying oscillations). Although there
are ample exercises in the usual manipulations, the spirit of the analysis goes
beyond mere manipulation to reach two end points. One is accommodating
piecewise continuous and impulsive forcing terms as in section 11.4, Ramps
and Jumps, and 11.5, The Unit Impulse Function. The other goal is the sort
of qualitative analysis exemplified by such exercises as 15-28 of the chapter
10 chapter exercises, p. 562-563.

Chapter 11 collects a number of familiar non-constant-coefficient solution
methods for second-order equations. These can be covered in succession
as ordered in the text or sampled from points earlier in the text as your
preferences dictate.

For example, sections 11.1, Reduction of Order, and 11.2, Cauchy-Euler
Equations, provide a general framework for solving homogeneous diffusion
problems in a circle, of which there are examples in section 9.1, Diffusion
Models. So 11.1 and 11.2 could immediately follow 9.1 if desired.

Moreover, solving nonhomogeneous diffusion equations in a circle would
require section 11.3, Variation of Parameters: Second-order Equations. Hence,
that section could join 11.1 and 11.2, immediately following 9.1.

In a completely different way, the idea of specializing from first-order
systems back to a second-order equation could motivate a brief study of 11.3,
Variation of Parameters: Second-order Equations, immediately following 8.4,
Nonhomogeneous Systems: Variation of Parameters.

Similar connections link power series methods and the eigenfunction prob-
lems that arise from applying the ideas of section 9.5, Fourier Methods, to
the heat equation in a circle. Section 11.4, Power Series Methods, and section
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11.5, Regular Singular Points, could be scheduled just after 9.5 to find those
eigenfunctions and to characterize their behavior near the origin.

To nurture mathematical maturity, some familiar analytic methods are
left to students to develop. Among them are:

o Integrating factor for linear, first-order equations in projects 1 and 2
of chapter 4, p. 200-201,

o (Constant-coefficient methods for third and higher order in exercises as
19-24 of the chapter 6 chapter exercises, p. 330,

o Undetermined coefficients for first-order systems in exercise 24 of sec-
tion 8.4, p. 423,

e Laplace transforms for systems in exercises as 29-36 of the chapter 10
chapter exercises, p. 563.

3.3.2 Maximal analytic solutions

Complete coverage of analytic solution methods could begin with a quick look
at separation of variables in subsection 1.3.3, then work methodically through
the first five sections of chapter 4: 4.1, Basic Definitions; 4.2, Separation of
Variables; 4.3, Characteristic Equations; 4.4, Undetermined Coefficients; and
4.5, Variations of Parameters. Section 4.6, Uniqueness and Existence, might
reasonably be part of such a thorough treatment.

Uniqueness is treated first in a separate subsection within section 4.6
so that it can be covered without considering existence, if necessary.
The machinery of uniqueness is a bit easier than that of existence, and
its graphical consequences often seem more significant to students than
existence, profound differences notwithstanding.

A correspondingly thorough treatment of second-order equations would
cover sections 6.1, Basic Definitions; 6.2, Testing Linear Independence; 6.3,
Characteristic Equations: Real Roots; 6.4, Characteristic Equations: Com-
plex Roots; and 6.6, Undetermined Coefficients.

Sections 6.5, Analyzing Models without Forcing, and 6.7, Analyzing Mod-
els with Forcing, contain examples of the application and utility of charac-
teristic equations and undetermined coefficients (e.g., to the discovery of
resonance). In the context of a thorough study of analytic methods, section
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6.8, Linear versus Nonlinear, shows how constant-coefficient linear equations,
those for which students have solution methods, arise naturally in the course
of a linear stability analysis.

The four sections of chapter 8 emphasize constant-coefficient systems:
8.1, Basic Definitions: Systems; 8.2, Constant-coefficient Homogeneous Sys-
tems; 8.3, Connections with the Phase Plane; 8.4, Nonhomogeneous Systems:
Variation of Parameters. Section 8.3 plays a role parallel to that of section
6.8, Linear versus Nonlinear, for second-order equations. It connects non-
linear and linear systems through a linearized analysis in the phase plane,
illustrating the importance of the eigenvalue-eigenvector understanding of
constant-coefficient, homogeneous systems. Of course, the phase plane per-
spective of section 8.3 is much richer than the elementary analytic view taken
in section 6.8.

Note that the vector-matrix view of systems is introduced gradually in
section 8.1, Basic Definitions: Systems, without assuming prior instruction
in linear algebra. Additional review of matrix concepts is provided in appen-
dix section A.5, material you may wish to incorporate if your students are
particularly uncertain about these ideas.

I find that MATLAB’s eigshow is a powerful classroom demonstration
in two respects. It illustrates the notion of matrix multiplication as a
vector input-output operation, and it nails down a geometric picture
of the meaning of a real eigenvalue. A few minutes of eigshow is worth
an hour of chalk and hand waving! Type help eigshow in the MATLAB
command window or access eigshow from the Analytic tools menu bar
selection in DELAB.

Section 9.2 uses the second-order solution tools of chapter 6 to solve
boundary-value problems, which are the diffusion models introduced in sec-
tion 9.1.

A syllabus that intended to cover every analytic method remaining in the
text would then proceed sequentially from 9.2, Boundary-value Problems,
through section 9.4, Time-dependent Diffusion (to derive the heat equation),
section 9.5, Fourier Methods, chapter 10, The Laplace Transform, and chap-
ter 11, More Analytic Methods for Two Dimensions.

If partial differential equations and Laplace transforms were not of inter-
est, one could move directly from the diffusion models and boundary-value
problems of sections 9.1-9.2 to sections 11.1-11.3 to cover reduction of order,
Cauchy-Euler equations, and variation of parameters, solution tools that can
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handle such non-constant-coefficient equations as models of diffusion in a
circle.

A more ambitious tour of analytic methods would work through section
9.5, Fourier Methods, a long section that should be covered one subsection
at a time. It could then turn to sections 11.4 and 11.5 for series solution
methods, motivated in part by the eigenfunction equation that arises from
separating the heat equation in a circle. Of course, the five sections of chapter
10, The Laplace Transform, could be covered last to complete a full tour in
a different order.

In summary, a complete tour of all analytic methods would visit the
following sections:

e 1.3: introduction to solution concepts

e 4.1-4.6: first-order initial-value problems

e 6.1-6.4, 6.6, 6.8: second-order initial-value problems
e 8.1-8.4: first-order systems

e 9.2: second-order (ordinary) boundary-value problems
e 9.5: Fourier methods for the heat equation

e 10.1-10.5: Laplace transform

e 11.1-11.6: additional second-order methods, including series

3.3.3 Minimal analytic solutions

A minimal treatment of analytic solution methods requires a glance at separa-
tion of variables (section 1.3.3), basic definitions and techniques for first- and
second-order linear, constant-coefficient scalar equations (4.1, 4.3-4.4, 6.1—
6.4, 6.6), and constant-coefficient, homogeneous, linear systems (8.1-8.2).
Extrapolate between this bare minimum and the full coverage of described
in the previous subsection to incorporate additional material you believe ap-
propriate.

31



3.4 Graphs and phase diagrams

Graphical ideas are introduced early (e.g., the direction field of figure 1.2, p.
4) and used regularly. Sketching solution graphs of first-order scalar equa-
tions (e.g., section 1.2, A Modeling Example; section 2.1, Simple Population
Models; section 2.2, Emigration and Competition, etc.) reinforces slope and
concavity ideas from calculus, providing an obvious connection with earlier
course work that many students find reassuring.

After regular but informal use of direction fields and solution graphs to
analyze the projectile model of chapter 1 and the various population models
of chapter 2, these ideas are consolidated in section 3.2, Direction Fields
and Phase Lines. They are further reinforced in section 3.3, Steady States,
Stability, and Linearization.

The phase plane first appears in the analysis of the population models
derived in section 2.4, Multiple Species. It is introduced more formally in
chapter 7, primarily through the nonlinear pendulum equation, and tied to
the geometry of the solutions of constant-coefficient, homogeneous, linear
systems in section 8.3, Connections with the Phase Plane.

A maximal treatment of graphical ideas would start with section 1.2, then
include all of sections 3.2, 3.3, 7.1-7.3, and 8.3.

A minimal treatment might omit subsection 3.2.3, Phase Lines, tread
lightly on the graphical interpretations of stability in section 3.3, and omit
section 7.2, Nullclines and Local Linearization, and section 7.3, Limit Cycles
and Stability. Conceivably, section 8.3, Connections with the Phase Plane,
could be omitted as well, but you would be depriving your students of the two-
dimensional punch line that connects analytic and geometric ideas. Without
it, differential equations will seem a long shaggy dog story about tricks and
special methods.

These graphical results—sketching solution plots, direction fields, phase
diagrams, etc.—can obtained through the Graphical tools menu bar selection
in DELAB.

3.5 Partial differential equations

The primary partial differential equation treated in this text is the heat
equation T; = kT, and its relatives in other geometries. It is derived in
section 9.4, then solved by separation of variables and Fourier series in section
9.5 and by the method of lines in section 9.6. Separating this equation in a
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circle provides a key example in section 11.5, Regular Singular Points.

The equilibrium solutions of this equation are defined by ordinary boundary-
value problems, providing a direct tie to the material of section 9.2, Boundary-
value Problems: Analytic Tools, and section 9.3, Boundary-value Problems:
Numerical Methods. Furthermore, analyzing rates of approach to equilib-
rium makes use of the analytic methods of section 9.5, Fourier Methods, and
the numerical methods of section 9.6, Initial-Boundary-value Problems: Nu-
merical Methods. Such qualitative analyses are less common in the usual
elementary study of partial differential equations, but they are consistent
with the spirit of model-analyze-interpret that runs through the text.

4 Section by section emphasis
Table 6 identifies the primary emphasis of each section relative to
e derivation or analysis of a model,

e development and application of one of the three categories of ideas,

— analytical,
— numerical,

— graphical.

5 Software

This text is supported by DELAB, a graphical user interface to MATLAB’s
powerful suite of tools. Users can either enter directly or select from a list a
differential equation or a system, then choose to find an analytic (symbolic)
solution, a numerical approximation, or a graphical display. DELAB has
been designed to meet two goals: providing easy access to MATLAB without
introducing unnecessary limitations and fostering effective use of MATLAB’s
full capabilities.

DELAB requires no knowledge of MATLAB, and use of its interface is
largely self-evident, though on-line help is available. However, users who are
familiar with MATLAB can return most symbolic, numerical, or graphical
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Primary emphasis by section

Models and | Analytical | Numerical | Graphical
their analysis tools tools tools
Chapter 1, Prologue, samples all four areas.
2.1-24
3.3 3.1 3.2
4.1-4.6
5.1-5.3
6.6, 6.7 6.1-6.4, 6.8
7.1-7.3
8.1-8.2, 84 8.3
9.1,9.4 9.2,9.5 9.3, 9.6
10.1-10.5
11.1-11.6

Table 6: The primary emphasis of each section

results from DELAB to the MATLAB command window for further study or
otherwise exploit MATLAB’s vast capabilities to perform a deeper analysis.

For example, a symbolic solution found through DELAB can be placed
in the MATLAB command window as a new symbolic variable so that the
user can find formulas for inflection points. Or it could be put into an inline
function so that the user could draw a surface plot illustrating variation in
behavior with time and initial value.

DELAB requires MATLAB 5.2 and its symbolic toolbox or the student
edition of MATLAB. More information about DELAB as well as the code
itself is available from www.wpi.edu/~pwdavis/DELab

6 Instructor aids

A solutions manual is available directly from Prentice Hall; contact Gale

Epps, Gale_Epps@prenhall.com, 1-201-236-7405. Additional exercises and

examples are posted regularly to www.wpi.edu/~pwdavis/ModelingWithMatlab.
Other comments, suggestions, and ideas are welcome. Please send them

to me at pwdavis@wpi.edu, with my thanks in advance.
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