
The Biot-Savart law 
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enables us to calculate the magnetic field produced by a current carrying wire of arbitrary shape. 

We applied the law to determine the field of a long straight wire (length    ) 

  
   

   
 

at perpendicular distance   from the wire.  The formula is exact for an infinitely long wire. 

The field at points along the axis of a circular loop of wire of radius   is easily found (see Y&F figure 

28.12).  Referring to the figure, the magnitude of the field of a current element     ⃗  is 
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where   is the angle between   ⃗  and  ̂.  From the figure we see that the angle is       for current 

elements all around the loop, so that       . 

The field   ⃗  of the element has a component parallel to the plane of the loop, and another component 

parallel to the axis of the loop (the   axis in the figure).  The axial component points in the    direction 

and has magnitude 

           
   

  

  

  

 

 
 

    

  

  

  
       

 

 
 

We will not bother with the planar component.  Why?  Because each current element is paired with a 

current element on the opposite side of the loop, and their planar components cancel.  

We may write the infinitesimal length    in terms of an infinitesimal angle    

        

The field at the point   along the axis is found by integrating over length around the loop, or 

equivalently, integrating over angle around the loop        
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Notice how everything except    is a constant and may be brought outside the integral (the infinite 

sum).  The integral over the angle yields a factor of   . 

For a coil of   turns of wire the field at a point   on the axis of the coil is 
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The field at the center of the coil is obtained by setting     
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Curl your right hand fingers in the direction of the current, then your thumb points in the  ̂ direction. 

For locations in space that are off-axis, the field lines resemble the dipole field.  The resemblance is 

exact for an infinitesimal coil. 

Ampere’s Law. Let’s review the field of a long straight wire.  The field lines form circles around the wire 

  
   

   
 

The field has constant magnitude along a circle of radius  , centered on the wire. 

Writing the formula in a slightly different way 

 (   )      

we see that the product of the field strength   multiplied by the circumference of the circle is equal to 

the encircled current   multiplied by the permeability constant.  This is true for any value of  . 

When we say that that the circle encloses the wire, we mean that the wire passes through the circle. 

You could, if you wanted, write the formula as the infinite sum (the integral) of elements     , where 

   is an infinitesimal piece of the circumference. 

∮             

Ampere came up with the bright idea that this more general relationship holds true not only for a circle, 

but for any closed path that encloses the current, and for any magnet field, uniform or not, provided you 

use the component of the field parallel to    at each point along the path (for the circle above, the field 

is tangent to the circle at all points) 
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In words, Ampere’s law states that the “circulation” of the field equals the enclosed current times   . 

Did you notice that there are two ways you can point   ⃗ , that is, two ways you can “walk” around the 

loop, clockwise or counter-clockwise?  Which way should we go to find the circulation?  Does it matter?  

Yes, it does matter; the direction determines the sign,   or   of the circulation.  To establish our 



convention, let’s refer to the simplest case, a long straight wire.  Point your thumb in the direction of the 

current; your fingers curl in the direction of the field lines.  If you “walk” in the direction indicated by 

your fingers, the circulation is positive, and the current that flows in the direction of your thumb is a 

positive current. 

Stated one more way:  if you walk counter-clockwise around an Amperian loop that lies in the plane of 

the page, a positive enclosed current points out of the page and will produce a magnetic field that 

results in a positive circulation. 

Let’s apply Ampere’s Law to a long solenoid to find the field inside the solenoid. 

A solenoid is formed by wrapping wire around a tube with the windings closely spaced. 

Applying the Biot-Savart law to this helical wire reveals that for a long, tightly wound solenoid, the field 

is very strong and very uniform inside the tube, and very weak outside the tube. 

Let’s consider an ideal solenoid (infinitely long and no space between the windings, for which field is 

zero outside the solenoid and of constant magnitude inside the solenoid).   

For a length of solenoid   containing   windings each carrying current  , and for an “Amperian” 

rectangular loop that encloses   windings (see Y&F figure 28.23 page 975),  

Ampere’s law gives 
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where   is the number density of turns  (turns per meter length of solenoid). 

At last, we have learned how to create a uniform magnetic field!  You can put your solenoid on the shelf 

next to your parallel plate capacitor.  Remember all those times we made use of a uniform magnetic 

field?  Remember the mass spectrometer? 

Examples 

Two wires carry currents    and   , one current is into the page, the other out of the page.  What is the 

magnetic field circulation around a loop that encloses the wires? 
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What is the circulation around a loop that does not enclose any of the wires? 
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