
The electric potential of a point charge 

The work   done by a field is the negative of the change in potential energy 

             ⃗        ⃗     ⃗⃗    ⃗ 

Dividing by the charge   we obtain the change in potential 
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Previously, we saw that for a uniform field (sketch a horizontal field and diagonal displacement) 

     ⃗⃗    ⃗               

where          is distance along a field line.  Note that distance   can be positve or negative. 

Consider the field  of a point charge 
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The field varies from point to along the displacement (sketch).  

Consider a radial displacement from    to   . 

Since the field is not constant along the path, to find the change in potential    we must:  

divide the displacement into an infinite number of segments, infinitesimal displacements   ⃗      ⃗, 

evaluate  ⃗⃗( ⃗) for each segment, and  

find the change in potential    over each segment; since the field is constant over an infinitesimal 

segment we write simply 

     ⃗⃗    ⃗ 

and perform an infinite sum from point   at  ⃗  to point   at  ⃗  

   ∫   ⃗⃗( ⃗)    ⃗
 

 

  ∫        ⃗   ⃗
 

 

    ∫
 

  
  

 

 

    [ 
 

 
]
  

  

   (
 

  
 
 

  
) 

The integral is found in a table of integrals (or Wolfram’s Integrator online). 

The change in potential is independent of path, since each infinitesimal element of the path  

  ⃗      ̂      ̂                      



has radial and lateral (tangential) components, and when dotted with  ⃗⃗     ⃗ reduces to the preceding 

form 
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recalling our dot products of unit vectors. 

If we take the displacement to begin at infinity     , the potential difference is 
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If we choose our zero reference     at    , then the above formula gives the potential with 

respect to     . 

We now have two expressions for the potential  , one for a uniform field 

                                    

and one for the field of a point charge 

   
 

 
                   

Both potentials can be  , the first since   can be  , the second since   can be   (  is always  ). 

Both potentials can be used to find the potential energy      of a charge   placed at   or  . 

When computing   and  , remember:  the zero references are at     and at    , respectively. 

Example:  the Hydrogen Atom.  The potential created by the proton is 

       
 

 
  

 

 
 

The potential energy of the electron at a distance   from the proton 

            
  

 
 

is negative.  If we plot  ( ) we see that the electron “lives” in a “potential well”. 

Suppose the electron in a hydrogen atom transitions from one orbit to another, from     to    
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The change in potential energy of the electron is 

         (     )                        

When making calculations involving electrons, it is customary to use electron volts   , a convenient unit 

of energy. 

You might think that the change in electron’s kinetic energy is given by 

       

but something else happens:  during the transition energy is radiated away in the form of light (take 

course PH1130 to learn about atomic transitions).   

To find the change   , we employ the equations of mechanics that describe circular motion. 

The centripetal force exerted by the proton on the electron is related to kinetic energy   by 
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The force is also given by Coulomb’s law 

   
  

  
 

Equating the two expressions for the force, we find 

 

 
   

  

  
    

   

  
  

 

 
            

  

 
 

The change    of the transition 
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is half of the potential energy change;  the other half of    goes to photon energy. 

 

The potential of a set of charges is simply the sum of the potentials of each, which can be derived using 

the preceding method (see Y&F Chap 23) 
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where    is the distance between the field point to charge    (sketch). 

We can plot the potentials  ( ) and  ( ) as functions of   and  , respectively. 



We can also sketch the “equi-potential” surfaces.  In 2D, these appear as lines and curves.  In 3D the 

equipotentials are surfaces, planes and spheres. 

The equi-potential lines are perpendicular to the electric field lines at points where the two cross.  This 

can be shown graphically.  Suppose the E and V lines cross at an angle other than    .   

The E line indicates the direction of the E field.  Break E field vector into components, one parallel to the 

V line.  The parallel component    produces a change in potential along the V line, which contradicts the 

fact that V is constant along the V line. 

Remember all the fun we had sketching the electric field lines?  Now we can sketch the equi-potentials 

along with the field lines and obtain much more interesting patterns of lines (use Caltech Applet). 

Rules for equi-potentials 

The equi-potentials are perpendicular to the field lines. 

The equi-potentials are more closely spaced in regions of stronger field. 

Examples:   

Given the field lines, sketch the equi-potentials.   

Given the equi-potentials, sketch the field lines.   

Given a set of charges and conductors, sketch the fields and equi-potentials. 


