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Abbott’s Flatland (1884) [1] is the story of the encounter between a two-dimensional 

creature, a Square, and a visitor from space, a Sphere. The Sphere tries to convince the Square of 

the reality of the third dimension, but with little success at first. Finally, after several long 

conversations and a few other worldly demonstrations, the Sphere succeeds in making the Square 

see the light (or the height?), with rather unfortunate consequences for the poor Square. Flatland 

became a big hit in the years and decades after it came out, and still continues to enjoy a robust 

reputation today. Much of the fallout generated by Flatland in the more than hundred years since it 

was written is documented in the annotated version of the book brought out by Stewart [2]. 

 

The mathematical (and psychological) problem tackled by Abbott in Flatland is that of 

conveying to an inhabitant of a certain space a feeling for dimensions that go beyond his or her 

own. This problem is very much with us today, perhaps even more so than in Abbott’s time, 

because advances in twentieth century mathematics and physics have forced a great many exotic 

spaces upon our attention. To give just one example, physicists working on “string theory” [3] tell 

us that we may live in an eleven-dimensional universe in which seven of the dimensions are curled 

up into tiny loops too small for us to see. Rather than tackle this complex problem, I will consider 

the simpler problem of conveying to a mathematically unsophisticated audience some idea of what 

a four-dimensional (Euclidean) world is like. I do this by presenting a ballet based on a tesseract, 

or four-dimensional hypercube, that tries to bring out some of the most basic features of a four-

dimensional world, particularly the relationship of the fourth dimension to the three dimensions we 

are already familiar with. The spirit of my demonstration is very similar to Abbott’s, only it is 

pitched at Spacelanders who are encouraged to make the leap from three dimensions to four, just 

as Abbott’s demonstration was pitched at a Flatlander who was encouraged to make the leap from 

two dimensions to three. My demonstration can be realized in two ways: either as a ballet 

performed on a stage, or as an animation shown on a computer screen. 

 

I should preface this account by stating that the tesseract is a hugely popular object on 

which an enormous literature exists. Computer animations of the tesseract, or related objects, are 

very common. A Google search of “tesseract” turns up more than 86,000 hits to it. However, to the 

best of my knowledge, there is no animation that exploits the idea of this paper. Readers who want 

a general introduction to the tesseract and some of the history and literature connected with it can 

profitably consult the books listed in Ref. [4], among the many that exist on the subject.  

 

There are two ways in which the demonstration of this paper differs from Abbott’s, one 

technical and the other stylistic. The technical difference is that whereas Abbott employs the 

method of sections to convey the idea of a sphere to a Flatlander, I employ the method of 
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projections to convey the idea of a hypercube to a Spacelander. In the method of sections, one 

shows several different “slices” of an object (i.e. cuts of it by lower dimensional hyperplanes) in an 

attempt to convey a feeling for the object to an inhabitant of a lower space. In the method of 

projections, by contrast, one casts a shadow of the entire object onto a lower dimensional space, 

causing its higher dimensional features to coalesce in complex ways in the space of the viewer. 

The stylistic difference is that whereas Abbott mainly employs skillful dialog, aided by only a few 

hand drawn sketches, to get his point across, I supply the viewer with a single dynamically 

unfolding  image (or ballet) and allow his/her eye and brain to supply the necessary commentary. 

 

             The demonstration of this paper works just as well for an n-dimensional hypercube (or n-

cube) as a tesseract, and so I present it first for this more general case before subsequently 

specializing the discussion to a tesseract. An n-cube is just the generalization of the ordinary 3-

cube to higher dimensions. Exactly as a cube can be generated from a square by moving the latter 

parallel to itself along the third dimension, so a 4-cube (or tesseract) can be obtained from a 3-cube 

by moving the latter parallel to itself along the fourth dimension. An iteration of this construction 

up to the n-th dimension leads to the n-cube. This construction shows that an n-cube can be 

regarded as pair of (n-1)-cubes displaced relative to each other along the n-th dimension, with the 

corresponding vertices of the two (n-1)-cubes being connected by a set of parallel edges along the 

n-th dimension. It is easy to see that the n-cube has twice as many vertices as the (n-1)-cube, and 

therefore 2
n
 vertices in all. With a suitable Cartesian coordinate system the vertices of the n-cube 

can be taken as ( )1, 1,..., 1± ± ± , where each of the n entries in the foregoing is either a +1 or a -1. 

 

 My animation, or “dance”, begins with 2
n
 dancers taking up positions at the vertices of a 

projected n-cube (with the positions of all the vertices in the plane assumed to be distinct). The 

dance then proceeds via a sequence of steps, each of which is of one of the following two kinds: 

(1) the dancers come together in pairs along a set of parallel edges of the hypercube to kiss at the 

midpoints of the edges and then return to their starting points, or (2) one or more subsets of 

dancers move around closed loops of edges on the hypercube, with each dancer advancing from 

one vertex to the next on a particular loop. After the right number of steps of these two kinds, 

executed in the proper order, each dancer has kissed every other one and returned to his/her 

starting position, and the dance comes to an end.  

 

             A more complete description of the dance can be given by beginning from the fact, noted 

earlier, that an n-cube may be viewed as a pair of (n-1)-cubes separated from each other along the 

n-th dimension. The dance on an n-cube can be built up from a dance on an (n-1)-cube (assumed 

known) as follows:  

(a) First, the dancers in each of the displaced (n-1)-cubes perform the dance among themselves.  

(b) Next, the dancers in one of the displaced (n-1)-cubes trace out a Hamiltonian circuit on that 

cube, pausing to perform step (c) when each dancer has advanced from one vertex to the next on 

the circuit. (A Hamiltonian circuit on a hypercube is a path that begins from one vertex and 

proceeds along the hypercube edges to every other vertex only once before returning to its starting 

point. A simple algorithm for constructing such a circuit on an n-cube is given in Ref. [5]).  

(c) During the pauses in (b), the dancers in the two displaced (n-1)-cubes approach each other 

along the set of parallel edges joining them to kiss at the midpoints of those edges and then return 

to their starting points. 
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             The above prescription shows that a dance on an n-cube can be built up recursively from 

dances on lower dimensional cubes. But a dance on a 2-cube (or a “square dance”) is easily 

devised, thereby allowing dances on all the higher dimensional cubes to be generated through 

repeated applications of the above three-part procedure. A dance on a 2-cube itself results from the 

above procedure if one defines a Hamiltonian circuit on a 1-cube (i.e. a pair of points joined by a 

line) as a to and fro motion from one vertex to the other and back (it should be stressed that a 

Hamiltonian circuit on a graph with a vertex of valence 1 is strictly impossible, and that the present 

definition is therefore nonstandard). The 2-cube dance obtained in this way consists of five steps, 

two of which are halves of a Hamiltonian circuit on a 1-cube. A Hamiltonian circuit on a 1–cube 

requires the dancers to pass “through” each other in the process of exchanging positions. In my 

computer animation of the dance, a collision between the dancers is avoided during this maneuver 

by having the dancers sidestep each other.   

 

             I now specialize the above scheme to n = 4 and give a detailed blueprint for a dance on a 

tesseract. The dance begins with 2
4
 = 16 dancers taking up positions at the vertices of the projected 

tesseract in Fig.1 (where the vertices have been numbered 1 through 16). Let [i,j] (a “kiss”) denote 

a movement in which the dancers at vertices i and j approach each other along the edge joining 

them, kiss at the midpoint of that edge, and then return to their starting points. Also let 

(a,b,c,…,g,h) (a “shuffle”) denote a movement in which the dancer at vertex a goes to vertex b, the 

one at b goes to c, …, and the one at h to a, thereby completing the cycle. The complete score of 

the tesseract dance then consists of the following 29 steps of kisses and shuffles (with all kisses/ 

shuffles listed in a single step to be performed synchronously): 

   

Step 1:           [1,2], [3,4], [5,6], [7,8], [9,10], [11,12], [13,14], [15,16] 

Step 2:           [1,3], [2,4], [5,7], [6,8], [9,11], [10,12], [13,15], [14,16] 

Step 3:           (3,4), (7,8), (11,12), (15,16) 

Step 4:           Repeat Step 2 

Step 5:           Repeat Step 3 

Step 6:           [1,5], [2,6], [3,7], [4,8], [9,13], [10,14], [11,15], [12,16] 

Step 7:           (5,6,8,7), (13,14,16,15)  

Steps 8-13:    Repeat Steps 6 and 7 three times 

Step 14:         [1,9], [2,10], [3,11], [4,12], [5,13], [6,14], [7,15], [8,16] 

Step 15:         (9,10,14,13,15,16,12,11)  

Steps 16-29:  Repeat Steps 14 and 15 seven times  

  

        The dance on an n-cube performed according to this scheme requires a total of 2
n+1

 – 3 steps 

which, for n = 4,5 or 6, leads to 29, 61 or 125 steps, respectively. For a 5- or a 6-cube, the planar 

skeleton on which the dance is performed must be chosen with care to ensure that the vertices do 

not coincide (the simple orthographic projection used to generate Fig.1 no longer suffices for n-

cubes with n > 4). The technical challenges involved in staging such a dance, and also the demands 

on the audience, are more severe and so this possibility will not be discussed further here. 
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                  Fig.1. A hypercube with its vertices numbered 1 to 16. 

 

 

  The dance on the 4-cube presented above may not be totally satisfying to some viewers 

because the shuffles (or “Hamiltonian cycles”) are distributed unevenly among the dancers. This 

defect is remedied in the score below in which the purpose of the last step, which consists simply 

of 8 exchanges of position (with a sidestep to avoid collisions), is to get the dancers back to their 

starting positions at the beginning of the dance. 

 

Step 1:           [1,2], [3,4], [5,6], [7,8], [9,10], [11,12], [13,14], [15,16] 

Step 2:           [1,3], [2,4], [5,7], [6,8], [9,11], [10,12], [13,15], [14,16] 

Step 3:           (3,4), (7,8), (11,12), (15,16) 

Step 4:           Repeat Step 2 

Step 5:           (1,2), (5,6), (9,10), (13,14) 

Step 6:           [1,5], [2,6], [3,7], [4,8], [9,13], [10,14], [11,15], [12,16] 

Step 7:           (5,6,8,7), (13,14,16,15)  

Step 8:           Repeat Step 6  

Step 9:           (1,3,4,2), (9,11,12,10) 

Steps 10-13:  Repeat Steps 6,7,6,9 

Step 14:         [1,9], [2,10], [3,11], [4,12], [5,13], [6,14], [7,15], [8,16] 

Step 15:         (9,10,14,13,15,16,12,11)  

Step 16:         Repeat Step 14   

Step 17:         (1,3,4,8,7,5,6,2) 

Steps 18-29:  Repeat Steps 14,15,14,17,14,15,14,17,14,15,14,17 

Step 30:         (1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16) 
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Endnote An early version of the computer animation described in this paper was presented at the 

annual meeting of the Society of Literature and Science in Buffalo, New York, in October 2001. I 

would like to thank Professor Lance Schachterle, Associate Provost at WPI, for his interest in this 

work. 

 


