
Introduction
• Shor’s algorithm, which lets quantum computers factor 

large numbers more quickly than any classical computer, 
poses a threat to traditional cryptographic protocols.

• This threat to classical cryptography posed by quantum 
computers can be countered by using a new method for 
sharing a secret key based on the exchange of qubits. 
These protocols which rely on a secret key being encoded 
into a system of qubits are called quantum key 
distribution (QKD) protocols, and their security is 
ensured by the laws of quantum mechanics. 

• Verifying the security of these protocols can be done 
using a measure of uncertainty called the von Neumann 
entropy, which is a generalization of the Shannon 
entropy used in classical information theory.

The BB84 Protocol
The BB84 protocol is the first QKD protocol. A sender Alice 
and receiver Bob follow this procedure:

1. Alice sends a key through a sequence of qubits, which are 
in eigenstates of the Pauli spin operators X and Z. 

2. Bob measures either X or Z on each of Alice's qubits 
according to a random basis string.

3. Alice and Bob determine, using a public channel, which 
qubits they prepared or measured in the same basis, 
which allows them to generate a shared key.

4. Alice and Bob then use classic cryptographic techniques 
to shrink their key to a fraction of its original length to 
ensure that any information that may have leaked out to 
an eavesdropper has been shrunk to zero.

The virtue of BB84 is that any observation on the 
transmitted qubits is not passive and causes errors that can 
be detected and corrected in Step 4.

Other types of entropy
The joint entropy characterizes the uncertainty of a pair of
random variables, and can be used to calculate the
conditional entropy, or uncertainty about one variable
when given information about another.

These classical measures of uncertainty have analogues for
qubits in which the role of the Shannon entropy is taken
over by the von Neumann entropy, calculated by replacing
the probabilities in the Shannon entropy by the eigenvalues
of the density matrix describing the quantum system.

Entropic uncertainty relations
• Maassen and Uffink formulated a bound on the sum of

entropies of two conjugate bases for a quantum state.
This sum is bounded by a function of c, which is a
measure of the closest distance between an eigenstate of
A and one of B.

Conclusion
• We verified Berta et al.'s strengthened EUR for three

types of bipartite states.
• This study could be extended to cover tripartite EURs

which are of relevance to QKD protocols involving an
eavesdropper.
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Berta et al. strengthened the Maassen-Uffink relation to
incorporate the conditional entropy of A given B.

A strengthened EUR
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Several formulas in classical information theory along 
with their quantum analogues.

The entropies on the left represent Bob's uncertainties
about the results of Alice's measurements of X and Z, while
H(A|B) represents Bob's uncertainty about Alice's state
before Alice makes a measurement on it.

The use of an entangled state allows for H(A|B) to be negative
(an occurrence that is impossible classically) and leads to the
Maassen-Uffink bound being lowered.

We verified Berta’s strengthened EUR for several types of
bipartite states:
• A product state (analogous to independent variables in

classical information theory)
• An entangled state with variable entanglement
• A Werner state (a perfectly entangled state with noise)

The difference between 
the two sides of the Berta 
EUR for a Werner state as 
a function of noise.
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Background on entropy
The Shannon entropy of a random variable X, denoted
H(X), is a measure of its uncertainty and can be thought of
as the average number of yes or no questions that must be
asked to determine the outcome of that variable.
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