Applications and Constructions of W-States

James McClung Physics Advisor: Professor Aravind Mathematics Advisor: Professor Mosco

Classical versus Quantum

Classical **Computing**

- uses bits
- \bullet each bit is either 0 or 1
- can describe system of bits with a single string
	- e.g. "01011"
- \bullet completely deterministic

Quantum **Computing**

- uses qubits
- each qubit is in a superposition of 0 and 1, with coefficients in $\mathbb C$
- system of qubits described by superposition of strings
	- \circ e.g. $\sqrt{3}/2$ $|OO1\rangle + i/2$ $|IO1\rangle$
- can be nondeterministic

Classical < Quantum

https://wi-images.condecdn.net/image/094V4Ko5RO9/crop/2040/f/quantum-computing-hero.jpg

Parallelization via superpositions can lead to exponential speedup

X

Crack RSA encryption, and introduce quantum encryption

Faster simulation of atomic and molecular dynamics

Anatomy of a System of 3 Qubits

square-magnitude of state's coefficient is probability that system collapses to that state when measured

⅓ chance that system collapses to |001〉

⅙ chance that system collapses to |100〉

1/√3 |001〉 - 1/√3 |010〉 - i√6 |111〉 + e1.2i/√6 |100〉

"normalized:" square-magnitude of coefficients sum to 1

"one-hot" states: exactly one 1

W-States: Even Superpositions of One-Hot States

W-States

 $1/\sqrt{2}$ ($|01\rangle + |10\rangle$) — aka the Bell state ψ^* $1/\sqrt{3}$ ($|010\rangle$ + $|100\rangle$ + $|001\rangle$) 1/2 ($|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle$) W_n = 1/Vn (|100...0〉 + |010...0〉 + ... + |000...1〉)

Not W-States

 $|01\rangle + |1\rangle - |01\rangle$ + $|1\rangle - |1\rangle$ 1/√2 (|000 $\rangle\,$ + |111 \rangle) $-$ "GHZ $_3$ " state 1/√2 ($|010\rangle$ + $|100\rangle$) — missing $|001\rangle$ $1/\sqrt{3}$ ($|001\rangle - |010\rangle + |100\rangle$) — nonuniform phase

Construction of W⁴ : Create Superposition

input register: all qubits in state |0〉

$$
\left|0\right\rangle \left\langle \begin{array}{c|c} \hline H & \frac{1}{\sqrt{2}} & 0 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left|1\right\rangle
$$

$$
\left|0\right\rangle \left\langle \begin{array}{c|c} \hline H & \frac{1}{\sqrt{2}} & 0 \end{array} \right\rangle + \frac{1}{\sqrt{2}} \left|1\right\rangle
$$

 $|0\rangle$

 $|0\rangle$ θ

State of System

Hadamard gates transform |0〉 to a superposition of |0〉 and $|1\rangle$

system state is tensor product of individual qubits

|0000〉 $\frac{1}{2}$ |0000〉 + ½|0100〉 + ½|1000〉 + ½|1100〉

> automatically got two one-hot states

$\textbf{Construction of W}_4$: 0000 \rightarrow 0010

qubits acting as "control"

these qubits are now entangled; no longer have individual states

qubit being "target": NOT (X) gate only activates if control qubits are |0〉

State of System

Construction of W₄: 1100 \rightarrow 1101

qubits acting as control again; black means they must be |1〉 to activate target

State of System

NOT gate only activates if control qubits are |1〉

Construction of W⁴ : 1101 → 0001

one control and two targets

State of System

|0000〉 $\frac{1}{2}$ |0000〉 + ½|0100〉 + ½|1000〉 + ½|1100〉 $\frac{1}{2}$ |0010〉 + ½|0100〉 + ½|1000〉 + ½|1100〉 $\frac{1}{2}$ |0010〉 + ½|0100〉 + ½|1000〉 + ½|1101〉 $\frac{1}{2}$ |0010〉 + ½|0100〉 + ½|1000〉 + *<ି⁄/*zୀ0001∂∙ **FINISHED**

More About W-States

03

01

Difficult to Construct Information Storage

For $n \neq 2^k$, need nonstandard types of gates

02

Hard to disentangle -> robust way to store information

Disprove Locality

Can experimentally disprove locality without resorting to inequalities as in Bell's Theorem **04**

Unique Resource

Cannot be transformed to other LOCC classes via LOCC operations