Applications and Constructions of W-States

James McClung Physics Advisor: Professor Aravind Mathematics Advisor: Professor Mosco

Classical versus Quantum

·Classical Computing

- uses bits
- each bit is either 0 or 1
- can describe system of bits with a single string
 - ⊃ e.g. "OlOll"
- completely deterministic

Quantum Computing

- uses qubits
- each qubit is in a superposition of 0 and 1, with coefficients in $\mathbb C$
- system of qubits described by superposition of strings
 - e.g. $\sqrt{3}/2 |001\rangle + i/2 |101\rangle$
- can be nondeterministic

Classical < Quantum

Parallelization via superpositions can lead to exponential speedup

X

Crack RSA encryption, and introduce quantum encryption

Faster simulation of atomic and molecular dynamics

Anatomy of a System of 3 Qubits

square-magnitude of state's coefficient is probability that system collapses to that state when measured

1/3 chance that system collapses to |001 \rangle

1% chance that system collapses to $|100\rangle$

$1/\sqrt{3}$ 1001 - $1/\sqrt{3}$ 1010 - $i\sqrt{6}$ 111 + $e^{1.2i}/\sqrt{6}$ 100

"normalized:" square-magnitude of coefficients sum to 1 "one-hot" states: exactly one 1

W-States: Even Superpositions of One-Hot States

W-States

 $\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) - \text{aka the Bell state } \psi^{+}$ $\frac{1}{\sqrt{3}} (|010\rangle + |100\rangle + |001\rangle)$ $\frac{1}{2} (|1000\rangle + |0100\rangle + |0010\rangle + |0001\rangle)$ $W_{n} = \frac{1}{\sqrt{n}} (|100...0\rangle + |010...0\rangle + ... + |000...1\rangle)$

Not W-States

 $|01\rangle + |1\rangle - invalid superposition$ $1/\sqrt{2} (|000\rangle + |111\rangle) - "GHZ_3" state$ $1/\sqrt{2} (|010\rangle + |100\rangle) - missing |001\rangle$ $1/\sqrt{3} (|001\rangle - |010\rangle + |100\rangle) - nonuniform$ phase

Construction of W₄: Create Superposition

input register: all qubits in state $|0\rangle$

$$|0\rangle - H - \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$
$$|0\rangle - H - \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$
$$|0\rangle - H - \frac{1}{\sqrt{2}} |0\rangle$$

$$\rangle$$
 ——— $|0\rangle$

$$|0
angle$$
 ——— $|0
angle$

Hadamard gates transform $|0\rangle$ to a superposition of $|0\rangle$ and $|1\rangle$

system state is tensor product of individual qubits

State of System

0000 $\frac{1}{2}|0000\rangle + \frac{1}{2}|0100\rangle + \frac{1}{2}|1000\rangle +$ 1/2 1100

> automatically got two one-hot states

Construction of W_4 : 0000 \rightarrow 0010

qubits acting as "control"

these qubits are now entangled; no longer have individual states

qubit being "target": NOT
(X) gate only activates if
 control qubits are |0>

<u>State of System</u>

Construction of W_4 : 1100 \rightarrow 1101

qubits acting as control again; black means they must be |1> to activate target

<u>State of System</u>

NOT gate only activates if control qubits are $|1\rangle$

Construction of W_a : 1101 \rightarrow 0001

one control

and two targets

State of System

More About W-States

03

01

Difficult to Construct

For n ≠ 2^k, need nonstandard types of gates

02

Information Storage

Hard to disentangle -> robust way to store information

Disprove Locality

Can experimentally disprove locality without resorting to inequalities as in Bell's Theorem 04

Unique Resource

Cannot be transformed to other LOCC classes via LOCC operations

Thank You

Questions?

jpmcclung@wpi.edu

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>.