
public static void bulgarianSolitaire(int numCards) {
​ ​
​ ​ //game loop var
​ ​ boolean finished = false;
​ ​
​ ​ // Check if given number of cards is triangular
​ ​ int n = (int) Math.sqrt(2*numCards);
​ ​ if (n*(n+1)/2 != numCards) {
​ ​ ​ System.out.println(numCards + " is not triangular");
​ ​ ​ return;
​ ​ }
​ ​
​ ​ int shuffle_counter = 1;
​ ​
​ ​ Random rand = new Random();
​ ​
​ ​ //create the final_list
​ ​ ArrayList<Integer> final_list = new ArrayList<>();
​ ​ int runningSum = 0;
​ ​ int next = 1;
​ ​ while (runningSum < numCards) {
​ ​ final_list.add(next);
​ ​ runningSum += next;
​ ​ next++;
​ ​ }
​ ​
​ ​ //create the original randomized piles
​ ​ int remaining_cards = numCards;
​ ​ ArrayList<Integer> cards = new ArrayList<Integer>();
​ ​
​ ​ while (remaining_cards > 0) {
​ ​ ​ int pile = rand.nextInt(1, remaining_cards+1);
​ ​ ​ cards.add(pile);
​ ​ ​ remaining_cards -= pile;
​ ​ }
​ ​ //keep working on it until the final case for the triangular number is
reached
​ ​ while (!finished) {
​ ​ ​
​ ​ ​

​ ​ ​ //better logic
​ ​ ​ int cards_removed = 0;
​ ​ ​
​ ​ ​ for (int i = cards.size()-1; i >= 0; i--) {
​ ​ ​ ​ cards.set(i, cards.get(i)-1);
​ ​ ​ ​ if (cards.get(i) == 0) {
​ ​ ​ ​ ​ cards.remove(i);
​ ​ ​ ​ ​ cards_removed++;
​ ​ ​ ​ }
​ ​ ​ }
​ ​ ​
​ ​ ​ cards.addLast(cards.size() + cards_removed);
​ ​ ​
​ ​ ​
​ ​ ​ //output
​ ​ ​ System.out.print("Shuffle #" + shuffle_counter + ": ");
​ ​ ​ for (int i = 0; i < cards.size(); i++) {
​ ​ ​ ​ System.out.print(+ cards.get(i) + " ") ;
​ ​ ​ }
​ ​ ​
​ ​ ​ System.out.println();
​ ​ ​
​ ​ ​ shuffle_counter++;
​ ​ ​
​ ​ ​
​ ​ ​
​ ​ ​ //checked for size also as containsAll doesn't account for duplicates
​ ​ ​ finished = (cards.size() == final_list.size()
&&cards.containsAll(final_list));
​ ​ ​
​ ​ ​ // old logic for shuffle, made it more efficient
​ ​ ​ ​ ​ ​ /*
​ ​ ​ ​ ​ ​ int original_length = cards.size();
​ ​ ​ ​ ​ ​ int adaptive_length = original_length;
​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ for (int i = 0; i < adaptive_length; i++) {
​ ​ ​ ​ ​ ​ ​ cards.set(i, cards.get(i)-1);
​ ​ ​ ​ ​ ​ ​ if (cards.get(i) == 0) {
​ ​ ​ ​ ​ ​ ​ ​ cards.remove(i);
​ ​ ​ ​ ​ ​ ​ ​ adaptive_length-=1;

​ ​ ​ ​ ​ ​ ​ ​ i--;
​ ​ ​ ​ ​ ​ ​ }
​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ }
​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ cards.addLast(original_length);
​ ​ ​ ​ ​ ​ */
​ ​ ​
​ ​ }
​ ​
​ ​
​ ​
​ }
}

