
‭Nicholas Giza, Lindsey Paradise, Kayla Vallecillo, Cecilia Carbonell‬
‭10/13/23‬
‭Queens - Section B‬
‭Birthday Pow Write Up‬

‭Problem Statement‬
‭What do Mahatma Gandhi, Madonna, and Eleanor Roosevelt have in common? They‬

‭were all born on Saturdays! As you start to think about what day of the week you were born on,‬

‭it may be difficult to find out, especially without a reference such as a calendar or an online‬

‭calculator. With factors such as leap years, shifting weekdays every year, and limited access to a‬

‭calendar or reference, this process becomes strenuous and time-consuming. Through the use of‬

‭arithmetic and logic, however, this process becomes easier and more organized. To make this‬

‭process easy and accessible to‬‭all‬‭birthdays after‬‭1901 and before 2100, a universal process that‬

‭evaluates what day of the week that someone was born on must be created. This paper will‬

‭outline and justify one mathematical approach to this problem.‬

‭Process‬
‭To alleviate any confusion, the team defined “day” as the day of the week (ex. Sunday)‬

‭whereas “date” was the numerical day of the month (ex. 10). Early in our process, the team‬

‭noticed that their 17th birthdays fell on the same day of the week as the days on which they were‬

‭born. This led the team to make the false assumption that this pattern is true for all dates, 17‬

‭years apart. This was later proven incorrect, and the team had to quickly redirect to a new‬

‭approach.‬

‭Following discussion, it was concluded that the solution should be thought of as two‬

‭parts: the first part would find the first day of the year, while the second would find the change in‬

‭days up to the target date. It was believed that once developed, those steps could be combined‬

‭and return a value representing the day of the week that a target date was on. The team began by‬

‭addressing the second phase. In order to pursue a solution mathematically, a system of date‬

‭representations was devised where the days Sunday through Saturday were represented by the‬

‭numbers 0 through 6, respectively. From there, a reference date was needed and through‬



‭counting backwards from the current date, the first day of the year 2023 was found to be a‬

‭Sunday. It took a large amount of logical consideration and trial and error to figure out that the‬

‭first day of the year should be represented by the number 1, and that every seven day cycle will‬

‭end on the day before the starting day. For example, a seven day cycle that starts on a Sunday‬

‭will end on a Saturday and January 6th is the 6th day of the year. Based on these discoveries, it‬

‭was reasoned that the number of whole weeks, minus one (to compensate for a week cycle‬

‭ending one day before the starting day), plus the number of surplus days, would equate to the‬

‭numerical difference in days between the first day of the year and the current day/target day. This‬

‭can also be written as the date number in mod 7, minus one [1], see appendix. The outputs and‬

‭logic in both expressions are the same.‬

‭As the team tested the previous method, finding no further issues, the first step now had‬

‭to be addressed. The subsequent process was the most challenging and yielded the most‬

‭problems. The development of the first step began with some additional logical reasoning. The‬

‭team noticed that the days repeated every 28 years, not 17, as was previously thought. It became‬

‭apparent that if any year could be simplified to an equivalent year between 1901 and 1928, then‬

‭the first day of the corresponding year could be solved for and would represent the first day of‬

‭the target year. Unfortunately, this was incredibly difficult to structure into the form of an‬

‭equation. Eventually, an error-prone equation [2] was created based on a few reference dates to‬

‭represent this pattern. It used logic that claimed that the difference between the target year and‬

‭1901 could be divided by 28 and the remainder would represent the position in the 1901 to 1928‬

‭sequence. Then, since there was a 5 day increase in the starting day every four years (+1 day for‬

‭each of the three normal years and +2 for the leap year), the position in the aforementioned‬

‭sequence was multiplied by 5/4 and truncated to represent the total change in the starting day‬

‭between 1901 and the target year. Here, +1 day meant that a year began one day later than the‬

‭previous year. The number two was added to this value to account for the fact that January 1,‬

‭1901 was a Tuesday. All initial testing showed that this method worked. In order to further test‬

‭this, the equation was inserted into a spreadsheet to test all years between 2023 and 1901. To the‬

‭team’s dismay, this logic failed to account for the dates in a leap year prior to February 29th,‬

‭since the current model accounted for the extra +1 shift on January 1st, not February 29th. The‬

‭whole idea had to be scrapped and the team began to search for a new direction.‬



‭After communicating with Gustavo, a member of a different group, the idea of having‬

‭365.25 days in a year was found to be crucial to the solution. There are, in fact, 365.25 days in a‬

‭year, which is why there are leap years, so this approach would already account for them. With‬

‭this in mind, the number of years since 1901 could be multiplied by the average days in a year to‬

‭find an approximate number of days between the first day of 1901 and the first day of a target‬

‭year. Truncation (removing any decimals) would simplify the numbers and the resulting value‬

‭could be increased by 2 (because 1901 started on a Tuesday) and put in mod 7 (the remainder‬

‭when divided by 7) to find the first day of the target year [3]. This approach was successful for‬

‭all date cases (non-leap year, dates before February 29th in a leap year, and after February of a‬

‭leap year).‬

‭Our two steps were then added together in mod 7, yielding our final solution [4] in the‬

‭form of a numerical day value (0-6). Thorough testing of all types of dates proved our method to‬

‭be correct. The group tested leap years, years prior to leap years, years after and everything in‬

‭between to ensure one-hundred percent accuracy. Our steps were then broken down into‬

‭friendlier language to universalize usability across all mathematical skill levels. After several‬

‭failed attempts and many revisions, our solution was complete.‬

‭Solution‬

‭To find the day of the week of‬‭m‬‭/‬‭d‬‭/‬‭y‬‭:‬

‭1.‬ ‭Subtract 1901 from the target year (‬‭y‬‭).‬

‭2.‬ ‭Multiply the answer from step 1 by 365.25‬

‭3.‬ ‭Add 2 to the answer from step 2‬

‭4.‬ ‭Round down to the nearest whole number‬

‭5.‬ ‭Add the number next to the target month in Table One to‬‭d‬

‭6.‬ ‭Subtract 1 from the answer to step 5‬

‭7.‬ ‭Add the answer from step 4 to the answer from step 6‬

‭8.‬ ‭Divide the result by seven and record the remainder‬

‭9.‬ ‭Use Table Two to find the day of the week that corresponds to the remainder, that day is‬

‭the day of the target date.‬



‭Table One‬

‭* A year is a leap year if it is evenly divisible by 4‬

‭Target Month‬ ‭Days to Add to‬‭d‬ ‭* Days to Add to‬‭d‬‭if‬‭y‬‭is a Leap Year‬

‭January‬ ‭0‬ ‭0‬

‭February‬ ‭31‬ ‭31‬

‭March‬ ‭59‬ ‭60‬

‭April‬ ‭90‬ ‭91‬

‭May‬ ‭120‬ ‭121‬

‭June‬ ‭151‬ ‭152‬

‭July‬ ‭181‬ ‭182‬

‭August‬ ‭212‬ ‭213‬

‭September‬ ‭243‬ ‭244‬

‭October‬ ‭273‬ ‭274‬

‭November‬ ‭304‬ ‭305‬

‭December‬ ‭334‬ ‭335‬

‭Table Two‬

‭Day of the‬

‭Week‬

‭Sunday‬ ‭Monday‬ ‭Tuesday‬ ‭Wednesday‬ ‭Thursday‬ ‭Friday‬ ‭Saturday‬

‭Remainder‬ ‭0‬ ‭1‬ ‭2‬ ‭3‬ ‭4‬ ‭5‬ ‭6‬



‭Extensions‬

‭Through the process of building a model to determine what day any date from 1901 to‬

‭2100 occurred, tools including arithmetic, logic, pattern recognition, and creativity were utilized.‬

‭This toolset can be applied to a variety of additional problems also relating to other types of‬

‭calendars and separate multi-annual cycles. Intriguing extensions to this project include:‬

‭1.‬ ‭Expanding the present model to account for years before 1900 and after 2100. This‬

‭would allow users to see what day their birthday will be in the future and plan‬

‭accordingly. If the model were to account for years before 1582, it would have to factor‬

‭in the transition from the Julian to the Gregorian calendar.‬

‭2.‬ ‭Calculating future Congressional and Presidential election years. Bonus points if the‬

‭model is able to determine when these election years overlap.‬

‭3.‬ ‭Determining, for a given year, if the Summer Olympics, Winter Olympics, or both were‬

‭hosted.‬

‭4.‬ ‭Tracking lunar cycles and calculating what phase of the moon it was or if it will be on a‬

‭specified day.‬

‭5.‬ ‭Modeling the future dates of holidays that do not fall on the same number day each‬

‭year. For example, since each year Easter Sunday is the first Sunday after the Pascal‬

‭Full Moon, could extension 4 be further adapted to determine the date of Easter in‬

‭future years? Additional holidays to model include Thanksgiving, Labor Day, Chinese‬

‭New Year, and Indigenous Peoples’ Day.‬

‭These extensions, ranging in difficulty, would create a new environment to build upon and refine‬

‭the skills gained while solving the original birthday Problem of The Week.‬

‭Appendix‬

‭[1] (#th Day of Year)-1) mod 7‬

‭[2] ((truncate to units place(1.2*((Y-1901) mod 28))mod7)+2‬

‭[3] (truncate to units place((YEAR-1901)*365.25+2)) mod 7‬

‭[4] ((truncate to units place((YEAR-1901)*365.25+2)) + (#th Day of Year)-1)) mod 7‬

‭[5] Link to the working model in a‬‭Google Sheets‬‭file.‬

https://docs.google.com/spreadsheets/d/100Ti7z2YmyQ_HGZGHoKf-KiKNP5rivSf-udm9ff64gw/edit?usp=sharing

