Project Notes:

<u>Project Title:</u> Filtering Microplastic <u>Name:</u> Neena Xiang

Note Well: There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely need to read it several times so set aside enough time in your schedule.

Contents:

Knowledge Gaps:	2
Literature Search Parameters:	3
Article #1 Notes: Title	4
Article #2 Notes: Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology	8
Article #3 Notes: Microplastics in wastewater treatment plants: Detection, occurrence and removal	11
Article #4 Notes: Small Microplastic Sampling in Water: Development of an Encapsulate Filtration Device	ed 13
Article #5 Notes: Size and shape matter: A preliminary analysis of microplastic samplin technique in seawater studies with implications for ecological risk assessment	ng 15
Article #6 Notes: Development of an optimal filter substrate for the identification of sma microplastic particles in food by micro-Raman spectroscopy	all 17
Article #7 Notes: Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride	n 18
Article #8 Notes: Water Filter	21
Article #9 Notes: 3 - Review of Characteristics of Common Plastics for Thermoforming	24
Article #10 Notes: A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property	g 27
Article #11 Notes: Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles	29

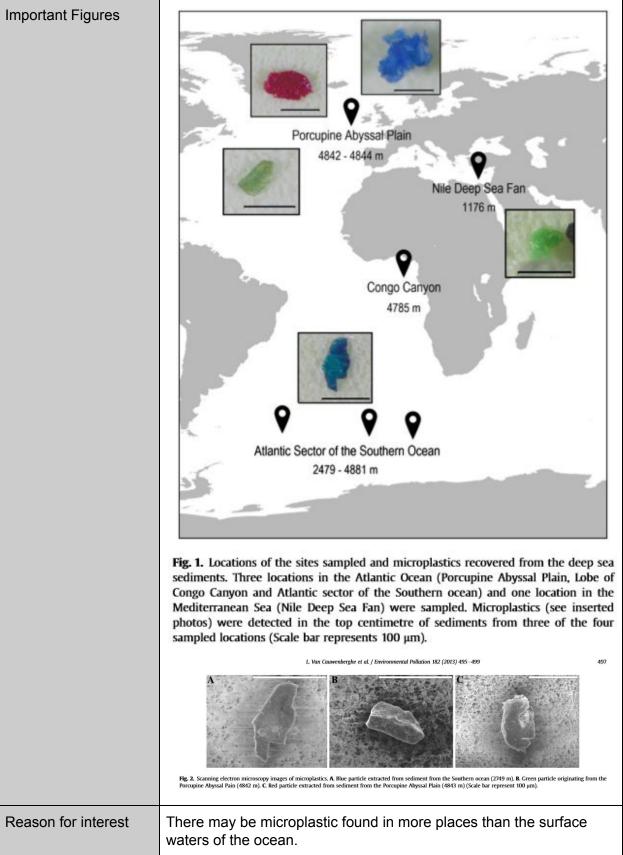
Knowledge Gaps:

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

Knowledge Gap	Resolved By	Information is located	Date resolved
What is the composition of microplastics			
How can microplastic be detected?	Reading article	Notes in Article 2	October 16, 2019
What are the most common types of plastics?	Reading article	Notes in Article 2	October 16, 2019
Properties of common plastic			

Literature Search Parameters:

These searches were performed between (Start Date of reading) and XX/XX/2019. List of keywords and databases used during this project.

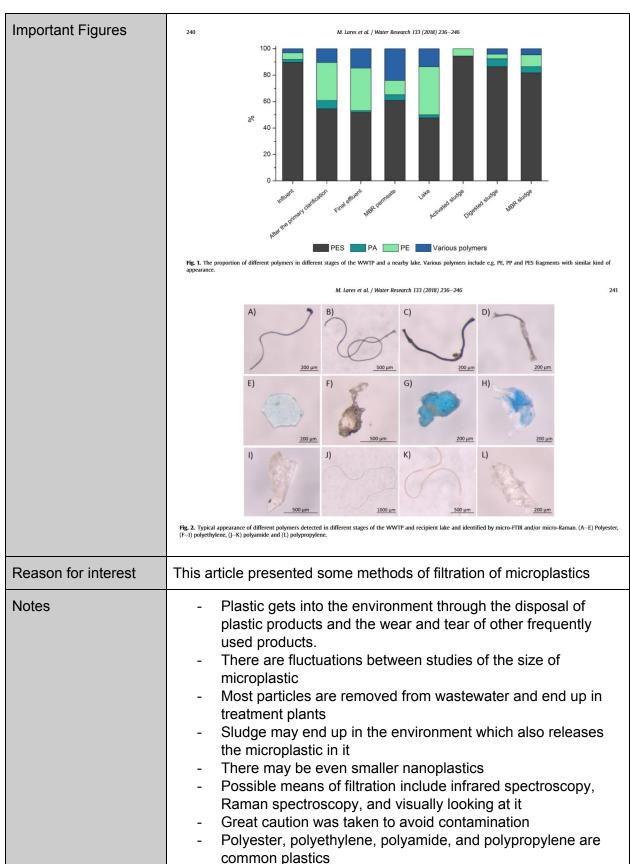

Database/search engine	Keywords	Summary of search
Engineering Village	Microplastic and filter	Found filters used on seawater
Engineering Village	Microplastic and filter	Found ways to detect microplastic
ScienceDirect	Common plastics and properties	Found a chapter of a book that explained the properties of common plastics

Article #1 Notes: Title

Source Title	
Source Author	
Source citation	
Original URL	
Source type	
Keywords	
Summary of key points	
Important Figures	
Reason for interest	
Notes	
Follow up Questions	

Article #1 Notes: Microplastic pollution in deep-sea sediments

Source Title	Environmental Science
Source Author	Lisbeth Van Cauwenberghe
Source citation	Van Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. <i>Environmental</i> <i>Pollution</i> . Retrieved from http://onemoregeneration.org/wp-content/uploads/2012/07/Microplast ic-pollution-in-deep-sea-sediments.pdf
Original URL	http://onemoregeneration.org/wp-content/uploads/2012/07/Microplast ic-pollution-in-deep-sea-sediments.pdf
Source type	Online journal
Keywords	Microplastics, Deep sea, Sediment, Pollution
Summary of key points	 Microplastics are found in deeper depths than initially thought Samples were taken from deeper in the ocean and microplastics were found



Notes	 Improper plastic disposal leads to the breakdown of those plastics in the ocean Sewage treatments don't keep microplastic, so it is released into aquatic environments " plastic particles <1mm accounted for 65% of all marine debris items collected on beaches in the Tamar Estuary (U.K.)" Marine animals will eat the plastics, and it will either exit the animal as defecation or stay in the tissues of the animal. There is plastic found in water columns and sediment in the ocean
Follow up Questions	Could there be micro plastic in the sediment on land?

Microplastics are small particles of plastic which have broken down from bigger plastic items. There has been a build up for decades, but it wasn't until recently that people have wondered how far the pollution has gotten. There have been microplastics found on the surface of the ocean, but there may be more microplastics at the bottom of the ocean. The study was conducted to prove that microplastic has indeed permeated to the bottom of the ocean.

Article #2 Notes: Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology

Source Title	Water Research
Source Author	Mirka Lares
Source citation	Lares, M., Ncibi, M. C., & Sillanpaa, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. <i>Water Research</i> , <i>133</i> , 236–246. doi: https://doi.org/10.1016/j.watres.2018.01.049
Original URL	https://www.sciencedirect.com/science/article/pii/S004313541830063 0
Source type	Online Journal
Keywords	Microplastics, WWTP (wastewater treatment plants), Wastewater, Sludge, Identification
Summary of key points	 Sludge samples were collected for 3 months The two methods of filtration used were conventional activated sludge and membrane bioreactor. Activated sludge was more efficient.

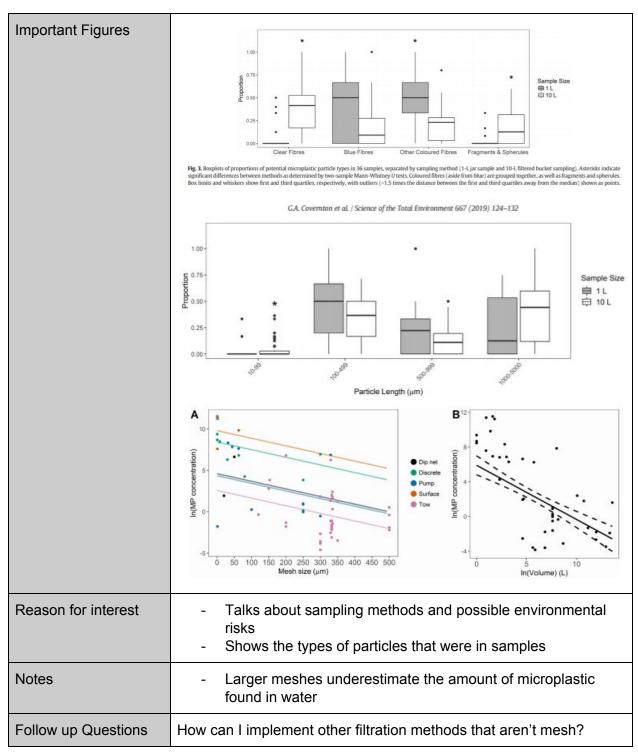
	 Polyester fibers were the most common plastics in the samples Polyethylene was the most common polymer in the samples Cosmetics give off microplastics Microplastic fibers are more common than microplastic particles in wastewater sludge If a mesh smaller than 250 nanometers is used, small sized MPs are lost
Follow up Questions	What other methods are there to filter out microplastic? What problems do different types of plastics create when being collected? How many different types of plastics are there?

Microplastic has found its way to wastewater treatment plants. The goal of the study was to find a way to efficiently filter the microplastic from the collected sewage. Researchers used the conventional activated sludge and membrane bioreactor to filter the microplastic, and identified any pieces with a microscope. The conventional activated sludge was found to be more efficient, and the collected microplastics were released into bodies of water.

Article #3 Notes: Microplastics in wastewater treatment plants: Detection, occurrence and removal

Source Title	Water Research
Source Author	Jing Sun
Source citation	Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, Bjie. (n.d.). Microplastics in wastewater treatment plants: Detection, occurrence and removal. <i>Water Research</i> , <i>152</i> , 21–37. Retrieved from Microplastics in wastewater treatment plants: Detection, occurrence and removal
Original URL	https://www.sciencedirect.com/science/article/pii/S004313541831068 6
Source type	Online Journal
Keywords	Microplastics Wastewater treatment plant detection Occurrence Sewage sludge Treatment technologies
Summary of key points	 There is no immediate danger in consuming microplastic, but the toxins can build up -

Important Figures	J. Sun et al. / Water Research 152 (2019) 21-37		
	<figure></figure>		
Reason for interest	The article gives insights into the methods that are already being used		
Notes	 Microplastics are mainly identified by size but it is subject to bias because of the color 		
Follow up Questions	 What are the most common types of plastic? Is there a way to use wastewater treatment methods in the ocean? How can the treatment plants be improved to collect all traces of microplastic? 		

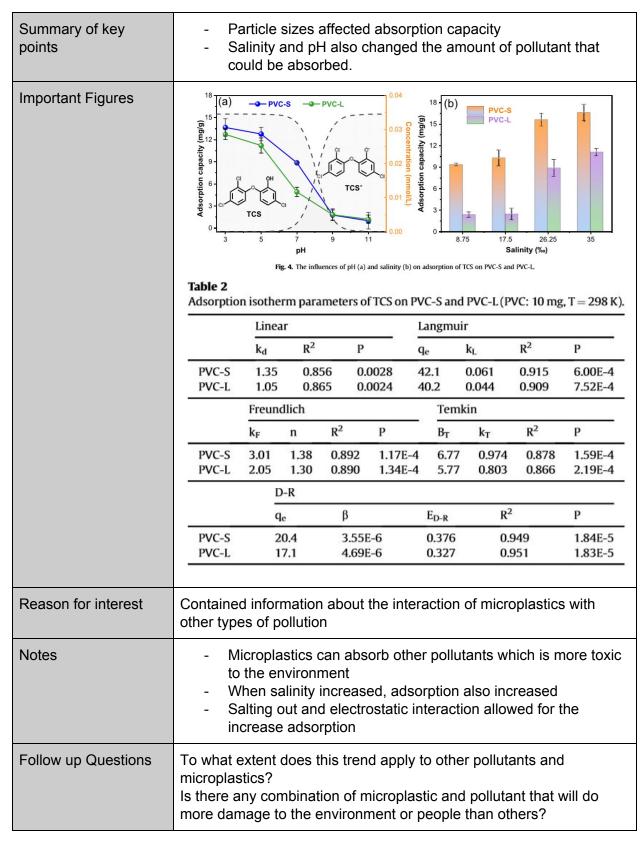

Article #4 Notes: Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device

Source Title	Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device
Source Author	Robin Lenz and Matthias Labrenz
Source citation	Lenz, R., & Labrenz, M. (2018). Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device. <i>Water</i> , <i>10</i> (8). doi: https://doi.org/10.3390/w10081055
Original URL	https://www.mdpi.com/2073-4441/10/8/1055/htm
Source type	Journal Article
Keywords	Microplastics, field work, pollution monitoring, engineering design
Summary of key points	 Microplastics that are less than 10 nanometers become too hard for flow through filtration to work
Important Figures	Vertical State System Requirements Components Control of the state stat
Reason for interest	This journal talk about some of the filtration methods that area

	already being used
Notes	 Most filtration methods just skim the surface of the water and need water to flow through it to work Centrifuges have also been used to separate microplastics by density When trying to collect really small microplastics, the filter material and air will contaminate the sample. Really fine sieves are easily clogged
Follow up Questions	 How can I get around flow through filtration? Is there a need for me to attempt to filter these smaller sized plastics?

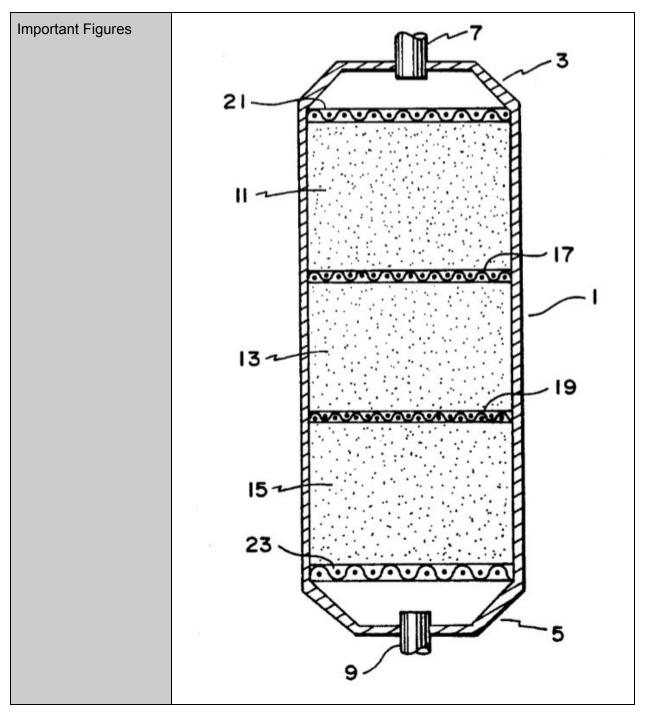
Article #5 Notes: Size and shape matter: A preliminary analysis of microplastic sampling technique in seawater studies with implications for ecological risk assessment

Source Title	Size and shape matter: A preliminary analysis of microplastic sampling technique in seawater studies with implications for ecological risk assessment			
Source Author	Garth A Coverton, Christopher M Pearce, Helen J Gurney-Smith, Stephen G Chastain, Peter S. Ross, John F. Dower, Sarah E Dudas			
Source citation	Covernton, G. A., Pearce, C. M., Gurney-Smith, H. J., Chastain, S. G., Ross, P. S., Dower, J. F., & Dudas, S. E. (2019). Size and shape matter: A preliminary analysis of microplastic sampling technique in seawater studies with implications for ecological risk assessment. <i>Science of the Total Environment</i> , <i>667</i> , 124–132. Retrieved from https://www-sciencedirect-com.ezproxy.wpi.edu/science/article/pii/S 004896971930854X			
Original URL	https://www-sciencedirect-com.ezproxy.wpi.edu/science/article/pii/S0 04896971930854X			
Source type	Journal			
Keywords	Aquaculture, Discrete, Filtration, Mesh, Methodology, Microplastics			
Summary of key points	 Microfibers are the most common shape of microplastic They can pass through mesh due to their thickness Mesh may not be the best method of filtration since it measures 1 - 4 times less 			


Article #6 Notes: Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy

Source Title	Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy					
Source Author		Barbara E Obmann, George Sarau, Sebastian W Schmitt, Heinrich Holtmannspötter, Silke H Christiansen Wilhem Dicke				
Source citation	Oßmann, B.E., S (2017) 409: 4099 https://doi-org.ez					em
Original URL	https://link-spring -0358-y#cities	ger-com.ezpr	oxy.wpi.edu/a	article/10	.1007/s0	0216-017
Source type	Journal					
Keywords	Microplastics . F Polycarbonate m		-		Alumini	um .
Summary of koy	Analysis					
Summary of key points		ne filters are l	sually happer helpful filters	ns on sur	ace of fil	ter
• •				ns on sur	Pore size (µm)	ter Diameter (mm)
points	- Membrar Table 1 Material, manufacturer,	ne filters are l	helpful filters	nces Whatman™ nces Whatman™	1081 10 5. W.	
points	- Membrar Table 1 Material, manufacturer, pore size and diameter of all tested, commercially available membrane filters	Material Material Regenerated cellulose Nitrocellulose Cellulose acetate Aluminium oxide Silver PC white PC black	Manufacturer GE Healthcare Life Scier Macherey-Nagel GE Healthcare Life Scier Pieper Filter GmbH Merck Millipore Ltd. Nuclepore GmbH Costar GE Healthcare Life Scier APC	nces Whatman™ nces Whatman™	Pore size (μm) 0.45 0.45 0.45 0.45 0.4 0.4 0.4 0.4 0.8 0.4 0.8 0.4 0.8 0.4	Diameter (mm) 50 47 47 25/47 47 25 25 37 25 13 25
points	- Membrar Table 1 Material, manufacturer, pore size and diameter of all tested, commercially available membrane filters	Material Material Regenerated cellulose Nitrocellulose Cellulose acetate Aluminium oxide Silver PC white PC white PC black PC coated with gold	Manufacturer GE Healthcare Life Scier Macherey-Nagel GE Healthcare Life Scier Pieper Filter GmbH Merck Millipore Ltd. Nuclepore GmbH Costar GE Healthcare Life Scier APC	nces Whatman™ nces Whatman™	Pore size (μm) 0.45 0.45 0.45 0.45 0.4 0.4 0.4 0.4 0.8 0.4 0.8 0.4 0.8 0.4	Diameter (mm) 50 47 47 25/47 47 25 25 37 25 13 25 25 25
points	- Membrar Table 1 Material, manufacturer, pore size and diameter of all tested, commercially available membrane filters Table 2 Material, type, manufac Material Typ Polystyrene Poly Polyethylene Clear	Material Material Regenerated cellulose Nitrocellulose Cellulose acetate Aluminium oxide Silver PC white PC black PC coated with gold turer and size of all used ple bead micron microspheres, ur microspheres, powder somatographic grade, powder der	Manufacturer GE Healthcare Life Scier Macherey-Nagel Macherey-Nagel GE Healthcare Life Scier Pieper Filter GmbH Merck Millipore Ltd. Nuclepore GmbH Costar GE Healthcare Life Scier APC astic particle standards 2.5% solids in water	nces Whatman™ nces Whatman™	Pore size (µm) 0.45 0.45 0.45 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Diameter (mm) 50 47 47 25/47 47 25 25 37 25 13 25 25 25

Reason for interest	It explores the concept of micro-Raman spectroscopy			
Notes	 There is microplastic even in food. Microplastics can get into organs through food consumption Using a metal coating will help material be detected by Raman spectroscopy Regenerated cellulose, nitrocellulose and cellulose acetate are some good materials. 			
Follow up Questions	Are there other more effective methods of analyzing collected plastic?			


Article #7 Notes: Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride

Source Title	Effect of microplastic size on the adsorption behavior and nechanism of triclosan on polyvinyl chloride			
Source Author	Jie Ma, Jinghua Zhao, Zhilin Zhu, Liquing Li, Yu Fei			
Source citation	 Ma, J., Zhao, J., Zhu, Z., Li, L., & Yu, F. (2019). Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. <i>Environmental Pollution, 254</i> Retrieved from https://www.sciencedirect.com/science/article/pii/S026974911 9336310 			
Original URL	https://www.sciencedirect.com/science/article/pii/S026974911933631 0			
Source type	Journal article			
Keywords	Microplastics, Polyvinyl chloride, Triclosan, Size, Adsorption behavior			

Article #8 Notes: Water Filter

Source Title	Water Filter			
Source Author	Theodore L Wilkinson and Frank J Sork			
Source citation	Wilkinson, T. L., & Sork, F. J. (n.d.).			
Original URL	https://patentimages.storage.googleapis.com/03/7b/45/d9954e68f49 052/US5149437.pdf			
Source type	patent			
Keywords				
Summary of key points	 One end for water to enter, the other end for filtered water to come out 3 layer of purification Layer one: metallic particles Layer two: activated carbon Layer three: weak acid 			

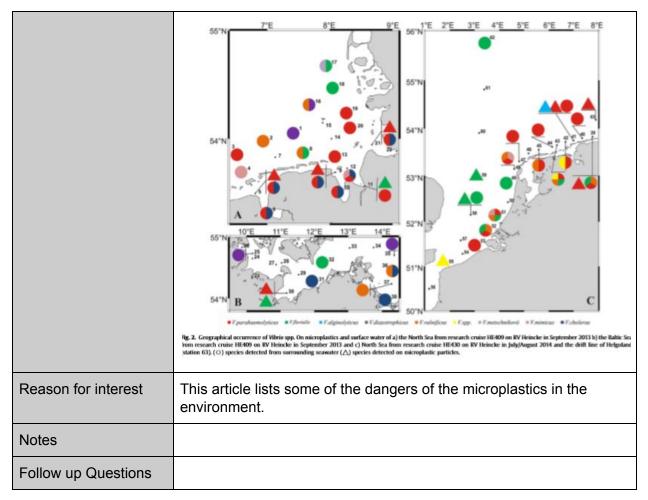
		-continued						
	Contaminant	Max. Allowed	Influent	Effluent				
	Selenium	< 0.01	0.09	0.007				
	Mercury	< 0.002	0.008	< 0.0005				
	Endrin .	< 0.0002	0.0008	< 0.0002				
	Lindane	< 0.004	0.013	0.0014				
	Methoxychlor	< 0.1	0.12	0.008				
	Toxaphene	< 0.005	0.02	< 0.005				
	2,4-D	<0.1	0.19	0.017				
	Silvex (2,4,5-TP)	< 0.01	0.02	0.008				
	T	EST B (150% OF CA	APACITY)					
	Chloroform	<0.1	0.440	0.042				
	Lead	< 0.025	0.141	0.005				
	Fluoride	<1.4	7.82	0.72				
	Nitrate	<10.0	27.8	9.48				
	Barium	<1.0	8.7	0.88				
	Arsenic	< 0.05	0.25	0.011				
	Cadmium	< 0.01	0.03	0.009				
	Chromium VI	< 0.05	0.14	0.024				
	Chromium III	< 0.05	0.162	0.013				
	Selenium	< 0.01	0.11	0.012				
	Mercury	< 0.002	0.005	< 0.0005 -				
	Endrin	< 0.0002	0.0006	0.0002				
	Lindane	< 0.004	0.015	0.002				
	Methoxychlor	< 0.1	0.34	0.031				
	Toxaphene	< 0.005	0.018	< 0.005				
	2.4-D	< 0.1	0.24	0.028				
	Silvex (2.4.5-TP)	< 0.01	0.016	0.008				
Decen for interest		v other filters are alr	e o du filtorio a	water				
Reason for interest	Gives insight into how other filters are already filtering water							
Notes	 Drinking water can contain various microorganisms and other suspended particles Activated carbon can become ineffective quickly Anions and cations have been used in filters along with activated carbon 							
Follow up Questions	What would be the average amount of usage one could get out of a water filter? What can cause that number to change?							

Article #9 Notes: 3 - Review of Characteristics of Common Plastics for Thermoforming

Source Title	Thermoforming of Single and Multiplayer laminates
Source Author	Seyd Ali Ashter
Source citation	Ashter, S. A. (2014). 3 - Review of Characteristics of Common Plastics for Thermoforming. In <i>Thermoforming of Single and</i> <i>Multilayer Laminates</i> (pp. 39–63). doi: https://doi.org/10.1016/B978-1-4557-3172-5.00003-7
Original URL	https://pdf.sciencedirectassets.com/305821/3-s2.0-C20120028219/3- s2.0-B9781455731725000037/main.pdf?X-Amz-Date=20191020T22 5051Z&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Signature =124b9ed3add37329dae9f64d422b12a8e5f090591bf26a53619ed53 befaa1b7c&X-Amz-Credential=ASIAQ3PHCVTY45H3HCQO%2F201 91020%2Fus-east-1%2Fs3%2Faws4_request&type=client&tid=prr-4 9591a56-fe70-4982-809f-d51eaaae6fe7&sid=dc4681ab9d1df844e88 bb535fc5534831d2agxrqa&pii=B9781455731725000037&X-Amz-Sig nedHeaders=host&X-Amz-Security-Token=AgoJb3JpZ2luX2VJEM7 %2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FW2CVzLWVhc3Qt MSJGMEQCIEX1WHF7UYUm4KmU16MfrR%2FxtyUj1SZ%2Fycv0 x%2BWFnhY3AiBqLNbPtpf4R7Xp5c2DWj6jaS46SZYBXQWWWjCV r55zSirjAwjH%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAIaD DA10TAwMzU0Njg2NSIM%2FJ0LPXy3GFGLjI3VKrcD2NXaMJNJf0 JzBKOvsvHcHr2I5aK5KtkQPIvt644rQgnD9ZwtsNJvEA%2BmZ5ViC EAHaYKo%2F5s3Bu%2BJBzMNuUX7ARd28%2FjCUzR0j7E7f4cgJ wZWZO9kJp01BFAdiv7X10iAwzFkaxFiO3SVCSCTUasVOtSVYKv MSJ5mRxk30DyQUIczfKNKz6DYE%2B6f222uyhItaRyw6z1tmZ6TrS rvIPpd4uZUhx5YmucoNNaIr9pQHS6jWtbwKFWjeA1hJCtq31qmHQ Jl000McQV0pu7nSSVHiKxQEwaME%2B6f4NTJCer2iJxccUx7b99S Yf4KqF0H%2Fog9dhjm0rYoFy0nrb8Wws0u4VDR%2FzbT2YGimbk aMQm1LWqCZlbp0R5zw55j3hhUc8medRzthi02GDQIpXJmqiCupd iKh5iJYqsGyzzlvQPLQ8edGC21yggrzp8t0GLEdInZ2PUEFQSjTCYw UY1%2B%2FTK9XGhiX%2F6IP6BX9YswpWp5DWk7izCkAJ08%2B d96MMJSMmuO9qN6Cqf6djr3lBuQxg98zF1q439Q%2BtCp%2FeAdh SIS2BNpM3kgYuZnJfUAm%2BrHnx9mu42w4I%2B2czpbPtBTq1AZ LtTBx3NnYN%2B5IvEpod2wCLELYCY6Y9XJCIh0LYqf4sjcGeMjiBx Fbi6BtQMJoZb7LzL3rxfjvXunIO0Bctc5Gm7m3G44fOuVX3aZlbpp7B VgBKxovl4LgpTkoCfL6JKfPqa2biPB3ItMRtma5tTGJnRV6K4jSFVTa C0Xnzs04bFZZeLwvyD%2FEJfw2krHsdLsF1kiUej%2F7aw1xFj76qo

	%2BNqskvbdaUDBKXAMWxyGDESy1la%2FEo%3D&host=68042c9 43591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61 &X-Amz-Expires=300&hash=c1d73a84f0a7fe25dfe905e0c98cd8c65 9959acf350c0943012a4e7af3f180be				
Source type	Book Chapter				
Keywords	Crystallinity, glass transition, temperature v molecular weight, molecular weight, distribu electrical resistance, chemical resistance, me properties	ition,			
Summary of key points	 Some plastics are tough and don't break easily Some are very tough but are brittle Different plastics will have different properties with advantages and disadvantages 				
Important Figures	Table 3.2 Comparison of Mechanical Properties of Polyamide Family [16]				
	Polyamide Specific Tensile Tensile Flexural Elongat Type gravity (g/ Strength Modulus Modulus at break cm ³) (MPa) (MPa) (MPa) (%)	ion Izod impact strength (kJ/m ²)			
	Nylon 6 1.13 70 2.8 2.2 15 Nylon 6, 6 1.14 85 3.0 2.8 5 Nylon 6, 10 1.07 55 2.1 - 70 Nylon 11 1.03 38 1.4 1.2 250	45-65 40-60 50 100			
	Table 3.3 Mechanical Properties of PTFE [27]				
	Property	Value			
	Tensile strength, MPa Elongation at break, % Tensile modulus, MPa Flexural strength, MPa Flexural modulus at 23 C, MPa Impact strength, Izod, notched, J/m Compressive strength, MPa	20-35 300-550 550 No break 340-620 188 34.5			
Reason for interest	It talks about the properties of the most common plast help in the filtering process.	ics which may			
Notes	 Polyester is used in the production of film and fibers Polyethylene terephthalate is hard, strong and extremely tough, has high abrasion resistant, and chemical resistant with low moisture absorption. It is used in special areas like electronics components, film and drinking bottles. Polyethylene has a density less than that of water. It is tough but has moderate tensile strength 				

	- The molecular weight can range from 10,000 to 40,000
Follow up Questions	Which plastics would pose the most issue with filtering?


Article #10 Notes: A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property

Source Title	Environmental pollution			
Source Author	ulu Lv, Junhao Qu, Zihua Yu, Daihuan Chen, Pengzhi Hong, Shengli Sun, Chenyong Li			
Source citation	Lv, L., Qu, J., Yu, Z., Chen, D., Hong, P., Sun, S., & Li, C. (n.d.). A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. <i>Environmental Pollution</i> , 225. doi: https://doi.org/10.1016/j.envpol.2019.113283			
Original URL	https://www.sciencedirect.com/science/article/pii/S026974911932956			
Source type	Journal			
Keywords	Microplastics, Staining, Thermal expansion and contraction, Identification, Quantification			
Summary of key points	 The method of staining was good for detecting polyethylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate. 			

Important Figures	Table 2 The recovery data of four fluorescent particles unde		cence field, and							ne number of	microplastics
	Microplastics		Dyes Nile red			FITC			Safranine T	8	
			Time (min) 10 20 30			Time (min) 10 20 30			- Time (min) 10 20 30		
	PE Temperature (°C)	25 50	18/20 30/30	21/22 25/25	21/22 24/24	18/32 22/22	22/26 24/24	27/34 31/31	0/24 28/28	0/25 29/29	0/28 23/23
	PVC Temperature (°C)	75 25 50	25/25 35/35 28/28	23/23 31/31 32/32	26/26 34/34 29/29	20/21 29/35 27/29	20/21 26/26 26/30	22/24 25/25 32/34	20/20 0/28 26/27	24/24 0/30 31/31	28/28 0/28 28/28
	PET Temperature (°C)	75 25 50	21/21 19/24 24/24	25/25 29/31 24/24	37/37 26/32 30/30	27/28 20/26 20/27	26/28 22/26 23/26	25/25 20/20 19/26	32/32 0/30 28/39	25/25 0/28 23/28	33/33 0/21 18/21
	PS Temperature (°C)	75 25 50	21/21 8/31 30/30	24/24 8/30 29/29	32/32 11/27 26/26	20/23 19/22 26/26	20/23 26/30 29/29	21/24 20/23 27/27	25/29 0/21 21/23	25/31 0/23 30/31	24/33 0/20 21/23
		75	23/23	30/30	32/32	25/27	21/23	29/31	20/22	22/26	23/23
	Table 3 Recovery rat on weight ca	alcula	ations). S							e and b	ased
	Microplast	Microplastics Dyes							-		
			Nile red Recovery rates (%)			FITC Recovery rates (%)			Safranine T Recovery rates (%)		
	PE		96 ± 2			98 ± 0.2			96 ± 0.2		
	PVC PET		93 ± 1 96 ± 0			95 ± 0.5 97 ± 0.5			98 ± 3 99 ± 0.5		
	PS		96 ± 0			98 ± 0.3			99 ± 0.2		
Reason for interest	There may their size.	be	some	proper	ties m	nore sp	ecific	to mie	croplast	ics du	e to
Notes	thei - Cer - Rec	 Visually identifying microplastics is not a good way to observe them. Certain dyes can only be absorbed by certain microplastics. Red Nile could only stain polyethylene, polystyrene, polypropylene, and nylon 6. 									
Follow up Questions		Can I use this method in my experiments? Is it costly to procure these materials.									

Article #11 Notes: Dangerous hitchhikers? Evidence for potentially pathogenic *Vibrio* spp. on microplastic particles

Source Title	Dangerous hitchhikers? Evidence for potentially pathogenic <i>Vibrio</i> spp. on microplastic particles					
Source Author	Igna V. Kristein, Sidika Kirmizi, Antje Wichels, Alexa Garin-Fernandez, Rene Erler, Martin Loder, Gunnar Gerdts					
Source citation	Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Loder, M., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. <i>Marine Environmental Research</i> , <i>120</i> , 1–8. doi: https://doi.org/10.1016/j.marenvres.2016.07.004					
Original URL	https://www.sciencedirect.com/science/article/pii/S014111361630112					
Source type	Journal					
Keywords	Synthetic polymers, Vector, Pathogens, North Sea, Baltic Sea					
Summary of key points						
Important Figures	Image: Static					

