Project Notes:

<u>Project Title:</u> Name:

<u>Note Well:</u> There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely need to read it several times, so set aside enough time in your schedule.

Contents: 1 **Knowledge Gaps:** Literature Search Parameters: 4 4 Tags: 5 Article #1 Notes: Title Article #1 Notes: Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach*** 6 7 Article #2 Notes: Can Fungi Clean Up a Superfund Site?*** Article #3 Notes: A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety*** 8 Article #4 Notes: The effective treatment of dye-containing simulated wastewater by using the cement 11 kiln dust as an industrial waste adsorbent Article #5 Notes: Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater 16 Treatment Article #6 Notes: Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review 19 Article #7 Notes: Recent advances in polymer composite, extraction, and their application for 22 wastewater treatment: A review Article #8 Notes: Enhanced biological wastewater treatment using sodium alginate-immobilized microorganisms in a fluidized bed reactor 26 28 Article #9 Notes: Application of coagulation/flocculation in oily wastewater treatment: A review Article #10 Notes: Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a 31 Species-Specific Manner

Knowledge Gaps:

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

Knowledge Gap	Resolved By	Information is located	Date resolved
Biodegradation by bacteria	Reading a scientific article	Article 1: Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach	08/28/2024
MFC	Reading a scientific article	Article 5: Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment	09/03/2024
Polymers coagulation and flocculation of dyes	Reading a scientific article	Article 9: Application of coagulation/flocculatio n in oily wastewater treatment: A review	10/06/2024
Bacteria transformation	Reading a scientific article	Article 10: Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner	09/30/2024
Dyeing process	Reading a patent	Patent 1: A kind of dyeing fabric sewage water treatment method, the first significant figure	10/09/2024
Fenton oxidation	Reading a patent	Patent 2: Method for treating dye wastewater	10/10/2024

Measuring the effectiveness of the degradation of dye	Reading a scientific article	Article 11: Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme- producing Bacillus thuringiensis: Degradation products and pathway	10/27/2024
Electrophoresis	Reading scientific articles	Article 10: Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner (to understand the results) Article 12: Construction of the RNAi plasmids to suppress the expression of chitin synthase-encoding genes (chs) in fungus Mucor lusitanicus (procedure)	10/27/2024
Ratio of materials for preparing Methylene Blue dye solution	Reading scientific articles	Article 13: Removal of methylene blue dye using shrimp shell chitin from industrial effluents Article 14: Methylene Blue biodecolorization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentonite matrix	12/18/2024
Process to obtain chitin from shrimp shells	Reading scientific articles	Article 13: Removal of methylene blue dye	12/18/2024

		using shrimp shell chitin from industrial effluents Article 16: A Review of the Chemical Extraction of Chitosan from Shrimp Wastes and Prediction of Factors Affecting Chitosan Yield by Using an Artificial Neural Network	
Evaluating chitosan quality	Reading scientific articles	Article 17: Chitinous polymers: extraction from fungal sources, characterization and processing towards value-added applications Article 18: Two-phase extraction, characterization, and biological evaluation of chitin and chitosan from Rhizopus oryzae	12/18/2024

Literature Search Parameters:

These searches were performed between 8/16/2024 and XX/XX/2025. List of keywords and databases used during this project.

Database/search engine	Keywords	Summary of search
PubMed Central	Bacteria, wastewater, dye	Bacteria degrade dyes
WPI Gordon Library	Chitin, transformation, bacteria	Chitin-induced transformation in bacteria
Google Scholar	Coagulation/flocculation, organic polymers	Organic polymers to coagulate/flocculate dyes
Google Patent	Wastewater treatment for dyes	Inventions related to improving the wastewater treatment of textile wastewater
Google	Fungi, treatment, biodegradation, methylene blue dye	Using fungi for biodegradation of methylene blue dye
WPI Gordon Library	Chitin synthase, bacteria	Feasibility of transforming chitin synthase into bacteria
Google	Shrimp shell, chitin, extraction, percent yield	Optimization for extracting chitin from shrimp shells, and the corresponding percent yield
WPI Gordon Library	Chitin, extraction, yeast	Method to extract chitin from yeast

Tags:

Tag N	Name

Article #1 Notes: Title

Article notes should be on separate sheets

KEEP THIS BLANK AND USE AS A TEMPLATE

Source Title	
Source citation (APA Format)	
Original URL	
Source type	
Keywords	
#Tags	
Summary of key points + notes (include methodology)	
Research Question/Problem/ Need	
Important Figures	
VOCAB: (w/definition)	
Cited references to follow up on	
Follow up Questions	

Article #1 Notes: Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach

Source Title	Biodegradation of synthetic dyes of textile effluent by microorganisms: an environmentally and economically sustainable approach
Source citation (APA Format)	Jamee, R., & Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. <i>European Journal of Microbiology and Immunology</i> , <i>9</i> (4), 114–118. <u>https://doi.org/10.1556/1886.2019.00018</u>
Original URL	https://akjournals.com/view/journals/1886/9/4/article-p114.xml
Source type	Journal Article
Keywords	textile industry, Azo dyes, biodegradation
#Tags	Degradation of Dyes by Bacteria
Summary of key points + notes (include methodology)	The article compiles many different articles on wastewater treatment, so it can produce an incomprehensive summary of the topic. Microorganisms that live near the discharge of wastewater containing dyes have adapted to convert the complex chemicals to nitrogen and carbon for themselves. Therefore, microorganisms, specifically bacteria, are used as treatments for dyes because they are also cheap, environmentally friendly, and produce few byproducts. Past studies have shown that bacteria are generally successful in degrading azo dyes and decolorizing the water, but the dyes do not produce enough carbon for the bacteria, so additional sources of carbon are needed.
Research Question/Problem/ Need	How effective are microorganisms as a potential treatment for industrial dyes in wastewater?

Dao 7

Important Figures	TREATMENT METHODS FOR TEXTILE WASTEWATER	
	PHYSICO CHEMICAL CHEMICAL METHODS BIOLOGICAL METHODS	
	FILTRATION ADVANCED OXIDATION PROCESSES (AOP) ENZYMES FLOCULATION ADSORPTION ADSORPTION REVERSE OSMOSIS OZONATION BACTERIAL CON	DGE
	The methods of wastewater treatment	SORTION
VOCAB: (w/definition)	Effluent: liquid waste or sewage discharged into a river or the sea Azo dye: synthetic organic compounds that contain nitrogen in the form of an azo group (N=N-) in their molecular structure	
Cited references to follow up on	Chen, KC., Huang, WT., Wu, JY., & Houng, JY. (1999). Microbial decolorization of azo dyes by Proteus mirabilis. <i>Journal of Industrial Microbiology and Biotechnology</i> , <i>23</i> (1), 686–690. <u>https://doi.org/10.1038/sj.jim.2900689</u>	
Follow up Questions	How will the microorganism function in an actual wastewater treatment plant? What type of bacteria is best needed to treat other types of dye? How fast is the evolutionary rate of bacteria to adapt to dye-containing effluent?	

Article #2 Notes: Can Fungi Clean Up a Superfund Site?

Source Title	Can Fungi Clean Up a Superfund Site?
Source citation (APA Format)	Parry, W. (2012, May 29). <i>Can fungi clean up a superfund site?</i> . LiveScience. <u>https://www.livescience.com/20573-fungal-cleanup-newtown-</u> <u>creek.html</u>
Original URL	https://www.livescience.com/20573-fungal-cleanup-newtown-creek.html
Source type	Newsletter Article

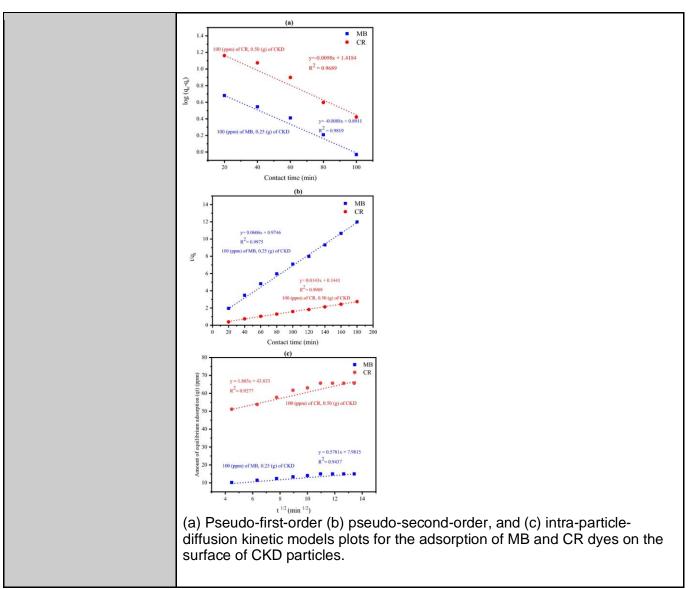
Keywords	Fungi, hydrocarbon bonds
#Tags	The secret of mycoremediation A tricky process
Summary of key points + notes (include methodology)	Newtown Creek in New York City is heavily polluted by fertilizers, sewage, oil, and petrochemical waste products. Therefore, an artist by the name of Jan Mun proposed to use oyster mushroom fungi filaments housed within a burlap to clean the water by decomposing the contaminants using the fungi's enzymes. Even though the fungi were effective at decomposing large molecules, bacteria were more favored as they were easier to grow and implement. However, the fungi were still considered to break down hydrocarbon bonds found in oil, and their mushrooms can absorb dangerous metals such as mercury from the creek. Still, implementing this method on the creek proved to be difficult as in the first trial, the mycelium disappeared once the burlap reached salty water. However, using fungi as a treatment to decontaminate wastewater on a large scale is a plausible method once the execution of the treatment is improved.
Research Question/Problem/ Need	Can fungi help decontaminate wastewater?
Important Figures	N/A
VOCAB: (w/definition)	Mycelium: The mass of branched, tubular filaments of fungi
Cited references to follow up on	N/A
Follow up Questions	How to increase the effectiveness of fungi? How to help fungi survive in saltwater? Do fungi work in a wastewater treatment plant?

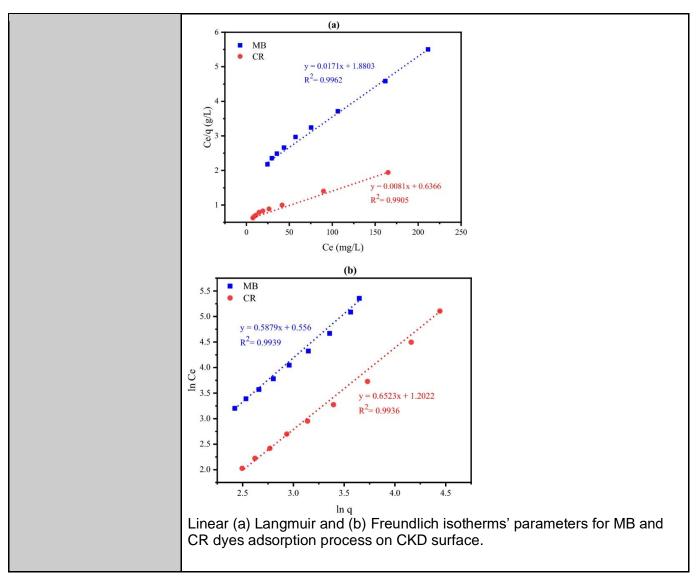
Article #3 Notes: A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety

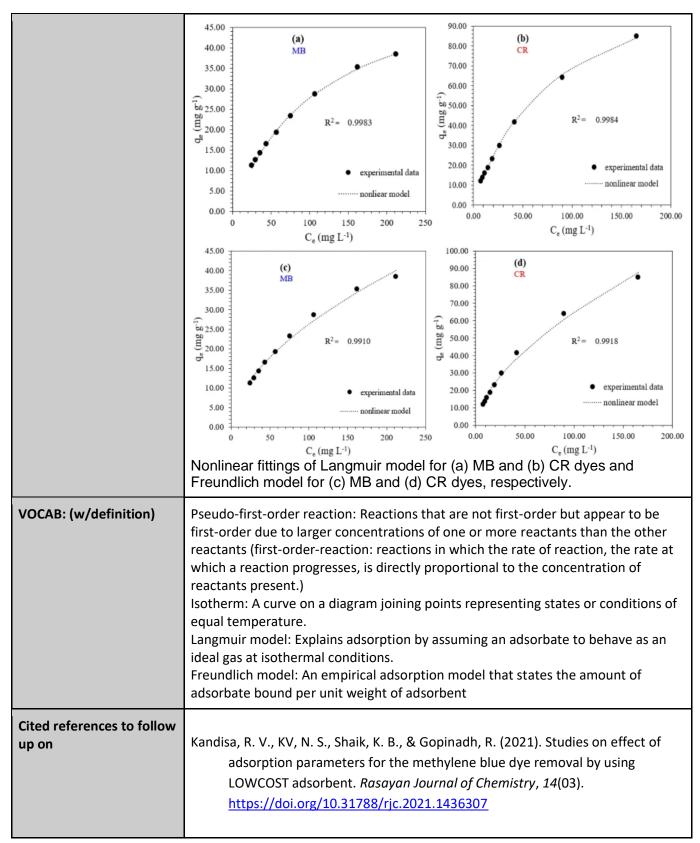
Source Title	A critical review on the treatment of dye-containing wastewater: Ecotoxicological
	and health concerns of textile dyes and possible remediation approaches for
	environmental safety

Source citation (APA Format)	 Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. AG., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. <i>Ecotoxicology and Environmental Safety</i>, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160
Original URL	https://www.sciencedirect.com/science/article/pii/S0147651321012720?via%3Dihub
Source type	Journal Article
Keywords	Hazardous pollutants, Textile wastewater, Dye removal, Toxicity, Treatment approaches, Environmental safety
#Tags	Impact of textile dyes on aquatic and terrestrial environments Impact of textile dyes on human health Coagulation-flocculation Bacteria-assisted degradation of dye-containing wastewater
Summary of key points + notes (include methodology)	The article compiles many research articles to explain different technologies to remove dye from wastewater. The first umbrella of methods discussed is the physical methods which include adsorption, membrane exchange, and ion exchange. These methods all use minimal equipment, are cost effective, and are resistant to other toxic chemicals. However, these methods are not usually preferred due to their limited application. Adsorption has several advantages including high reusability and time efficiency. Ion exchange used resins to bond with the dye and remove the resin after. This method is also efficient and provides more flexibility than adsorption. Membrane filtration is simple as gravity separates the large dye particles from water, but this method provides an inconvenience of having to frequently remove the filter. Next are the chemical methods coagulation-flocculation, electrochemical, and advanced oxidation. They all have collective disadvantages of being costly and energy consuming. Coagulate together and become heavier than the water, so the dyes can be removed by sedimentation. The disadvantage of this method is that its effectiveness is pH dependent. Advanced oxidation methods utilize hydroxides to break down dye chemicals into less toxic substances; these methods are also pH-dependent and may produce other toxic by-products. Electrochemical methods do not create toxic byproducts and sludge but require immense amounts of electrical power with less effectiveness than other methods. Finally, biological methods are enzyme-assisted decomposition, and utilizing yeast, bacteria, fungi, and algae to break down the chemicals. All these methods are very similar as they rely on organisms to digest and decompose dyes into harmless materials, and each method has a slight advantage over the other in different circumstances. Decomposition with enzymes works the same as the methods utilizing live organisms.

Research Question/Problem/ Need	What are th	ne curr	ent r	nethods of dye-containing wastewater treatment?	
Important Figures	Table 1 Biodegradation of textile dy				
	Microorganism D	Dye	Dye removal (%)	References	
	Bacteria-based dye degradation				
	Pseudomonas aeruginosa Ro	Red RBN Reactive Blue 172	> 90 83	Chen et al. (2003) Bhatt et al. (2005)	
	Enterococcus gallinarum C. 34	C.I. Direct Black 38	53-63	Bafana et al. (2008)	
	NCIM-2168 G	C.I. Reactive Green 19A Reactive Red 2	100 80	Saratal et al. (2009) Kalyani et al. (2009)	
	Bacillus sp. VUS N Kocuria rosea MTCC M	Navy Blue 2GL Methyl Orange	~90 100	Dawkar et al. (2009) Parshetti et al.	
	1532 Proteus mirabilis LAG Re	Reactive Blue 13	87.91	(2012) Olukanni et al. (2010)	
	Lysinibacillus sp. KMK-A Ro	C.I. Remazol Red Reactive Orange	100 98	Saratale et al. (2013) Chaudhari et al.	
	Bacillus cereus O	M2R Drange II /Acid	52.5	(2013) Garg, and Tripathi (2013)	
		Orange 7 Congo Red	36-94	(2015) Neifar et al. (2016)	
	BU118 Fungi-based dye				
		Remazol Brilliant Blue R	86.9	Aksu and Tezer (2000)	
	Penicillium oxalicum Ro Irpex lacteus Ro	Reactive Blue 19 Reactive Orange	91 95	Zhang et al. (2003) Novotný et al.	
	Neurospora crassa A	l 6 Acid Red 57 Brilliant Green	98.78 99.27	(2004) Akar et al. (2006) Kumar et al. (2012)	
	Aspergillus niger Ro	Red azo dye	99.69	Mahmoud et al. (2017)	
	Yeast-based dye degradation	Acid Red 97	75	Pandi et al. (2019)	
	-	Reactive Black B Methyl Red	60 100	Enrigend et al. (2008) Jachar et al. (2007)	
	geotrichum MTCC1360				
	NCIM-3326	Navy Blue HER Acid Blue 93	100	Saratale et al. (2009) Deivasigamani and	
	Galactomyces M	Wixture of dyes	88	Das (2011) Waghmode et al.	
	geotrichum MTCC1360 Candida krusei Ba	Basic Violet 3	100	(2011) Delvasigamani and	
		Fast Blue RR	> 85	Dervargamman and Das (2011) Grassi et al. (2011)	
		Acid Red B Acid Red B	90 97.37	Qu et al. (2012) Tan et al. (2014)	
	LH-F1 Scheffersomyces A	Acid Scarlet 3R	98.14	Tan et al. (2016)	
	spartinae TLHS-SF1 Trichosporon Re	Reactive Black 5	89	Martorell et al. (2017)	
	akiyoshidainum HP2023 Sterigmatomyces Ro	Reactive Black 5	100	Al-Tohany et al.	
	halophilus SSA1575 Algae-based dye			(2020a)	
		Remazol Brilliant Blue R	53.2	Aksu and Tezer (2005)	
	Coelastrella sp. R	Fartrazine Rhodamine B	68 80	Omar (2008) Balder et al. (2013)	
	vellereceum	Navy Blue HE22 Methyl Red	95 70-100	Kullarmi et al. (2018) Patil et al. (2015)	
			radat	tion of textile dyes by various microorganisms.	
				lar microorganisms for dye treatment	
VOCAB: (w/definition)	Coagulation: The action or process of a liquid, especially blood, changing to a solid or semi-solid state. Flocculation: A process in which small particles in a liquid clump together to form larger particles, or flocs.				
Cited references to follow up on	Lau, YY., Wong, YS., Teng, TT., Morad, N., Rafatullah, M., & Ong, SA. (2014). Coagulation-flocculation of azo dye acid orange 7 with green refined laterite soil. <i>Chemical Engineering Journal</i> , 246, 383–390. <u>https://doi.org/10.1016/j.cej.2014.02.100</u>				
	Neifar, M., Chouchane, H., Mahjoubi, M., Jaouani, A., & Cherif, A. (2016). Pseudomonas extremorientalis bu118: A new salt-tolerant laccase-secreting				


	bacterium with biotechnological potential in textile azo dye decolourization. <i>3 Biotech, 6</i> (1). <u>https://doi.org/10.1007/s13205-016-0425-7</u>
Follow up Questions	What is the best type of treatment for wastewater? How does each method compare with different dyes? What can be improved on these current methods?


Article #4 Notes: The effective treatment of dyecontaining simulated wastewater by using the cement kiln dust as an industrial waste adsorbent


Source Title	The effective treatment of dye-containing simulated wastewater by using the cement kiln dust as an industrial waste adsorbent
Source citation (APA Format)	Syala, E., Sadik, W. A., El-Demerdash, AG. M., Mekhamer, W., & El-Rafey, M. E. (2024). The effective treatment of dye-containing simulated wastewater by using the cement kiln dust as an industrial waste adsorbent. <i>Scientific</i> <i>Reports</i> , <i>14</i> (1). <u>https://doi.org/10.1038/s41598-024-64191-5</u>
Original URL	https://www.nature.com/articles/s41598-024-64191-5#citeas
Source type	Journal Article
Keywords	Wastewater, Methylene blue, Congo red, Dyes, Cement kiln dust
#Tags	Effects of various parameters on the removal of MB and CR dyes by CKD
Summary of key points + notes (include methodology)	Synthetic dyes are major pollutants in wastewater due to the textile industry. This pollutant can cause major diseases such as cancer in humans and animals and polluting the environment. Many biological, chemical, and physical methods are used to treat the dyes, and one of the most effective ways to reduce the dye's color is by adsorption. The experiment uses cement-kiln dust, a hazardous pollutant created as a waste product from creating cement, as an adsorbent. The CKD had been previously shown to effectively remove many types of dyes from wastewater, and this experiment was to test its effectiveness in removing Congo

	red and Methylene blue dyes which are both widely used dyes. The study focuses on the influence of pH, initial concentration, temperature of the dyes, and the contact time it takes the adsorbent to be saturated. As the simulated wastewater's pH increases, adsorption of the MB dye increases by about 10% from a pH of 2 to a pH of 12. However, adsorption of the CR dye decreases by about 15%. The contact time when the CKD stopped removing both dyes is 120 minutes. The removal in the percentage of the MB and CR dyes from the wastewater solution decreases as the concentration of the dyes increases due to the CKN being saturated. Finally, as the temperature of the solution increases from 25 degrees to 55 degrees, the CKN removes more dyes from the simulated wastewater. The study provided a great method to treat two of the most common synthetic dyes and the necessary conditions to utilize CKD, a pollutant itself, in removing these pollutants.		
Research Question/Problem/ Need	Can CKD be used to remove dyes from wastewater?		
Important Figures	The effect of (a) CKD dosage, (b) pH value, (c) contact time, (d) initial dye concentration, and (e) temperature on the removal (%) and the amount of equilibrium adsorption (Qe) of MB and CR dyes.		

	Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L. A., Shah, T., & Khan, I. (2022). Review on methylene blue: Its properties, uses, toxicity and photodegradation. <i>Water</i> , <i>14</i> (2), 242. <u>https://doi.org/10.3390/w14020242</u>
Follow up Questions	Would CKD be viable in a wastewater treatment plant? How to remove CKD from treated wastewater? Would CKD maintain its effectiveness in the treatment of other dyes than congo red and methylene blue?

Article #5 Notes: Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment

Source Title	Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment		
Source citation (APA Format)	 Roy, H., Rahman, T. U., Tasnim, N., Arju, J., Rafid, Md. M., Islam, Md. R., Pervez, Md. N., Cai, Y., Naddeo, V., & Islam, Md. S. (2023). Microbial fuel cell construction features and application for sustainable wastewater treatment. <i>Membranes</i>, 13(5), 490. <u>https://doi.org/10.3390/membranes13050490</u> 		
Original URL	https://www.mdpi.com/2077-0375/13/5/490		
Source type	Journal Article		
Keywords	MFCs, construction features, membrane, sustainable, wastewater		
#Tags	Anode Materials, Cathode Type for MFCs, Membrane Materials, Membrane Electrode Assemblies, Organic Dye-Based Pollutant Removal through MFCs		
Summary of key points + notes (include methodology)	This question is important as MFC is a new technology that aims to make wastewater treatment energy efficient, and environmentally friendly. However, developing an effective MFC system is challenging as different materials have different weaknesses and strengths ranging from cost to effectiveness in removing pollutants from wastewater. There is no definitive answer for which is the best		

	possible configuration of MFCs as the most efficient configuration would result in high cost of the materials, or maintenance of the MFCs. Therefore, this invalidates the advantages of MFCs as a cost-effective method to treat wastewater. However, when costs are low, the amount of energy produced decreases, and the effectiveness of pollutants removal also decreases which leads to a less effective treatment than traditional methods. However, with continual developments on the research of MFCs, a more efficient and cheaper configuration for wastewater treatment is possible as MFCs have received major improvements already.						
Research Question/Problem/ Need	What are the strengths and weaknesses of different permutations of microbial fuel cells?						
Important Figures	X Table 1. Advantages and disadvantages of different types of anode materials [21,35,36,39,44,45,47].						
	Anode Materials	Advantages	Disadvantages				
	Carbonaceous anode	High conductivityHigh stabilityBiocompatibility	Limited electrocatalytic activityLow power density				
	Carbon nanotube (CNT)	 Large surface area High mechanical strength Stability Electrical conductivity 	CloggingHigh operational costComplex synthesis procedure				
	Graphene	 Excellent electrical conductivity High mechanical strength Large surface area Biocompatibility High electron mobility 	Complex synthesis procedure				
	Conductive polymer	Excellent conductivityBetter bacterial adhesionEnhanced biochemical activity	 Accumulation of proton biofilm Cathodic overpotential Structural instability 				
	Metal	Expensive noble metalsHigh conductivity	Poor biocompatibilityCorrosivenessLow surface area				
	Metal oxide	 Reduction in internal resistance Improved biocompatibility	Expensive for large-scale implementation				
	Advantages and disa	advantages of different t	ypes of anode materials				

	Table 2 Advantages and disadvant	ages of different types of cathor	ae [22 49, 57]				×
	Table 2. Advantages and disadvantages of different types of cathodes [22,49,57]. Cathode Type Advantages Disadvantages						
	Air-cathode and aqueous air- cathode	Simple structure Cathodes can be modified using o performance Recycling of catholyte not require	heap materials such as activated carbon or HNO_3 to	000/080	of aqueous air- sover st can lead to a	-cathode limited by the	e solubility of
	Biocathodes	Inexpensive Sustainable Protection against catalyst poison Reduction in internal resistance	ing	Lower power Fluctuation o			
	Advantages and	d disadvanta	ges of different typ	es of cath	odes		
	Table 3. Advantages and o	lisadvantages of differen	t types of membrane materials [69,70	,71].			×
	Membranes		Advantages		Disadvanta	iges	
	Cation exchange membrane	 Lower ohmic resistant resistance High proton conductive 	ce resulting in lower internal ity	 pH splitting Oxygen crossover Biofouling resulting	in a reduction	on in ionic condu	ctivity
	Anion exchange membrane	 Useful for alkaline fue Prevent pH splitting 	I cells	Substrate crossoveBiofouling on the ca			
	Bipolar membrane • Effective for desalination • Prevent proton accumulation in anodic chamber • Prevent proton accumulation in anodic chamber		-	itting			
	Porous membrane	Inexpensive compareLow internal resistance		 Non-selective to ior Oxygen and substrational substrat		ər	
			ges of different typ	es of men	nbran	e mater	ials ×
	Type of Dye in Wastewater	MFC Configuration	Microbe Sources	Initial Concentration (mg/L)	Color Removal Efficiency (%)	Electricity Generation	References
	Acid orange 7 Tw	o equal rectangular Perspex frames	Microbial consortium	0.06	-	$0.31 \pm 0.03 \text{ W/m}^3$	[145]
	Diazo dye C.I. reactive blue 160 (RBu160)	Single-chamber MFC	Proteus hauseri ZMd44	450-600	-	197 W/m ²	[146]
	Methyl orange	Dual-chamber MFC	Anaerobic sludge from Gaobeidian wastewater treatment plant	10–20	73.4	-	[147]
	Congo red	Air-cathode	Mixture of aerobic and anaerobic sludge from Liede municipal wastewater treatment plant	300	90	192 mW/m ²	[148]
	Thionine-based textile dye	chamber MFCs	Proteus hauseri ZMd44 Microbial fuel cell coupled constructed wetland (CW	40	-	83.39 ± 0.28 m	[149]
	(ABRX3)	wetland (CW-MFC)	MFC)	300	95.6	0.852	[144]
	Different dye re different MFC c		ncies and power g s.	eneration	capa	cities for	
VOCAB: (w/definition)	primary cell. Cathode: the pos cell, that supplies	sitively charge s current. ended settlen	electrode of a devic d electrode of an ele nent and growth of a	ectrical dev	ice, su	ich as a p	orimary

Cited references to follow up on	 Hou, B., Hu, Y., & Sun, J. (2012). Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. <i>Bioresource Technology</i>, <i>111</i>, 105–110. <u>https://doi.org/10.1016/j.biortech.2012.02.017</u> Kalathil, S., Lee, J., & Cho, M. H. (2011). Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. <i>New Biotechnology</i>, <i>29</i>(1), 32–37. <u>https://doi.org/10.1016/j.nbt.2011.04.014</u>
Follow up Questions	How to develop a large system of MFCs? Does MFCs' effectiveness rely on the type of bacteria? When developing an MFC system, should one prioritize treating wastewater first or the amount of energy produced to develop more treatment systems after the MFCs?

Article #6 Notes: Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review

Source Title	Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review
Source citation (APA Format)	Zahrim, A. Y., Tizaoui, C., & Hilal, N. (2011). Coagulation with polymers for nanofiltration pre- treatment of highly concentrated dyes: A Review. <i>Desalination</i> , <i>266</i> (1–3), 1–16. <u>https://doi.org/10.1016/j.desal.2010.08.012</u>
Original URL	https://www.sciencedirect.com/science/article/pii/S0011916410005771?casa_token=e2doS_x _rGIAAAAA:bu9ROUqJqVKvyyHUCtvuszbfuf- e9HOhKKIUqeBX5MAO285wPLKMzqtnLK2CcEE_KPjZds92
Source type	Journal Article
Keywords	Dye, Nanofiltration, Coagulation, Polymers
#Tags	Coagulation/flocculation of dyes

Summary of key points + notes (include methodology)	The research reviews many articles to assess the effectiveness of coagulation as a pretreatment for nanofiltration. Nanofiltration is used as a process to remove dyes from wastewater, but this method is not very effective as dyes can start fouling and blocking the pores of the membrane. Therefore, coagulation/flocculation of the dyes by polymers will prevent the dyes from creating a film that could not be filtered by nanofiltration membrane. The chromophore and auxochrome of dyes affect the effectiveness of coagulation greatly, so dyes with Azo, Xanthene, and Anthraquinone structure will not coagulate well. Coagulation is also dependent on pH. Metal coagulants are used widely, and they are effective, but they can be serious health hazards if they remain in the water. Natural polymers are not toxic, but they are less effective as they could not be easily modified as synthetic polymers (both are organic polymers). The type of dyes affected the effectiveness of natural polymers coagulation greatly as the amount of color reduced ranging from 40% to 99% with the type of dyes chosen, and the type of organic polymers also affected this greatly. Coagulation with the combination of nanofiltration allows water to be reused, which is an improvement as water treated by treatment plants could not be used for personal activities.			
Research Question/Pr oblem/ Need	What is the effectiveness of organic and metal coagulants in different situations?			
Important Figures	Effect of the feed pre-treatment (alum-anionic polymer) for dyeing wastewater			

Dao	21
-----	----

s)	Inorganic coagulant	Type of Polymer (dosage)	Condition	Performance	Reference
Real textile wastewater	Ferric based (2 g/l)	Cationic polymer, Cyanoguanidine- formaldehyde (500 mg/l)	Final pH: 3.5; Temperature = 40 °C; Mixing time = 11 min; Settling time = 30 min	Colour removal = 50% Turbidity removal =>90% COD removal = 29%	[131]
Real textile wastewater	Aluminium based (2 g/l)	Cationic polymer, Cyanoguanidine- formaldehyde (500 mg/l)	Final pH: 5; Temperature = 40 °C; Mixing time = 11 min; Settling time = 30 min	Colour removal = 60% Turbidity removal = 80% COD removal = 28%	[131]
Various reactive dyes (100 mg/l)	Aluminium based (1 g/l)	Cationic polymer, Cyanoguanidine- formaldehyde (250 mg/l)	Initial pH: 5; Temperature = 40 °C; Mixing time = 11 min; Settling time = 30 min	Colour removal = 100%	[131]
Various acid dyes (50-100 mg/l)	Aluminium sulphate (100 mg/l)	Cationic polymer, Cyanoguanidine- formaldehyde – SENKA (5 mg/l)	Initial pH: 6-8; Temperature = ambient; Mixing time = 2 min; Settling time = 30 min	Colour removal =>95% except C.I. Acid Blue 52 and Acid Blue 7	[85]
125 mg/l polyvinyl alcohol (PVA) + 20 mg/l Reactive Blue (R94H)	Ferric chloride (150 mg/l)	Anionic (2 mg/l) — KURI diafloc Ap-120, Japan	Initial pH=4; Temperature = ambient; Mixing time = 40 min; Settling time = 30 min	COD removal = 66%; Colour removal = 12% (*Ferric chloride~5 mg/l)	[139]
Real wastewater from cotton synthetic-textile factory	Ferrous sulphate (1000 mg/l)	Anionic (5 mg/l) — HENKEL 23500	Initial pH = 9.5; Temperature = 20 °C; Mixing time = 22 min; Settling time = 60 min	Colour removal = 50%; COD removal = 50%; Toxicity removal = 80%	[140]
Real wastewater from cotton synthetic-textile factory	Aluminium sulphate (1500 mg/l)	Anionic (5 mg/l) — HENKEL 23500	Initial pH = 7.0; Temperature = $20 \degree$ C; Mixing time = $22 \min$; Settling time = $60 \min$	Colour removal = 60%; COD removal = 56%; Toxicity removal = 70%	[140]
Dyeing and finishing mill	Polyaluminium chloride (PAC) (100 mg/l) + electrochemical treatment	Unknown polymer (100 mg/l)	Initial pH = 3.0; Temperature = ambient; Mixing time = 5 min; Settling time = 60 min	Colour removal = 97%; COD removal = 73%	[134]
100 mg/l Reactive Blue STE	Polyferric chloride*	Cationic (polyDADMAC*) (dosage of composite = 20 mg/l)	Initial pH = 7.0; Temperature = ambient; Mixing time = 15 min; Settling time = 12 min	Colour removal = 99%	[141]
Real textile wastewater	Polyferric chloride*	Cationic (polyDADMAC*) (dosage of composite = 150 mg/l)	Initial pH = 7.0; Temperature = ambient; Mixing time = 15 min; Settling time = 12 min	Colour removal = 90%	[141]
Real wastewater from fabric dyeing industry	Aluminium oxide, Al ₂ O ₃ (1800 mg/l)	Cationic (polyDADMAC) — 30 mg/l	Initial pH = 5.7-5.90; Temperature = ambient; Mixing time = 11 min; Settling time = 30 min	Colour removal = 69% Turbidity removal = 99%	[128]
1000 mg/l reactive dye (Levafix Brill Blue EBRA)	Aluminium sulphate	Koaret PA 3230 (1 mg/l)	Initial pH = 5.0; Temperature = ambient; Mixing time = 13 min; Settling time = 24 min	Colour removal = 80%	[105]
1000 mg/l reactive dye (Levafix Brill Blue EBRA)	PAC	Koaret PA 3230 (1 mg/l)	Initial pH = 8.0; Temperature = ambient; Mixing time = 13 min; Settling time = 24 min	Colour removal = 80%	[105]
1000 mg/l reactive dye (Levafix Brill Blue EBRA)	Magnesium chloride	Koaret PA 3230 (1 mg/l)	Initial pH = 11.0; Temperature = ambient; Mixing time = 13 min; Settling time = 3 min	Colour removal =>90%	[105]
125 mg/l direct dye (Ciba-corb Yellow P-6GS)	Aluminium sulphate (70 mg/l)	Cationic (31 mg/l)	Temperature = ambient; Mixing time = 21 min; Settling time = 10 min	Colour removal = 50%; COD removal = 50%	[142]
Real textile wastewater	Ferric chloride (56 mg Fe/ l) Aluminium sulphate	Cationic (5 mg/l) Unknown polymer (11 mg/l)	Temperature = ambient; Mixing time = 32 min ; Settling time = 30 min Initial pH = 10 ;	Colour removal = 92%; Turbidity removal = 64% COD removal = 50%;	[143]
	(416 mg/l) + lime (213 mg/l)		Temperature = 30 °C; Mixing time = 35 min; Settling time = 300 min	BOD removal = 23%	
Real textile wastewater	Ferrous sulphate (400 mg/l) + lime, Ca(OH) ₂ (800 mg/l)	Cationic polymer (8 mg/l)	Initial pH = 12.5-13; Temperature = ambient; Mixing time = 22 min; Settling time = 45 min	Colour removal = 80-90%; COD removal = 50-55%	[107]
Real textile wastewater	Aluminium sulphate (20 mg/l)	Cationic polymer (2.5 ml/l)	Initial pH = 7; Temperature = ambient Mixing time = 22 min; Settling time = 30-150 min	Colour removal = 98%; COD removal = 45%; TOC removal = 50%	[46]
				(continued	on next page)

Dao 2	22
-------	----

		Table 4 (continued)									
		Type of dye(s)	Inorganic coagulant	Type of Polymer (dosage)	Condition	Performance	Reference				
		Real wastewater from textile bleaching and dyeing	Potassium Aluminium sulphate dodecahydrate (600 mg/l)	Anionic polyacrylamide, Excelfloc 204 (1.5 mg/l)	Initial pH = 7; Temperature = ambient Mixing time = 21 min; Settling time = 30 min	COD removal = 59% TSS removal = 65% Total dissolved removal = 37% Chromium removal = 76%	[145]				
		Real wastewater from textile bleaching and dyeing	PAC (800 mg/l)	Anionic polyacrylamide, Excelfloc 204 (1 mg/l)	Initial pH = 7.5; Temperature = ambient Mixing time = 21 min; Settling time = 30 min	Colour removal = 79% COD removal = 65% TSS removal = 68% Total dissolved removal = 39% Chromium removal = 45% Colour removal = 75%	[145]				
		Real wastewater from textile bleaching and dyeing	Ferrous sulphate (800 mg/l)	Anionic polyacrylamide, Excelfloc 204 (2 mg/l)	Initial pH = 10; Temperature = ambient Mixing time = 21 min; Settling time = 30 min	COD removal = 55% TSS removal = 56% Total dissolved removal = 34% Chromium removal = 20% Colour removal = 49%	[145]				
		Reactive dye – Procion Brilliant Blue RS (100 mg/l)	PAC (0.05 mg/l)	Natural polymer — psyllium (2 mg/l)	Initial pH = 10; Temperature = ambient Mixing time = 50 min; Settling time = 60 min	Colour removal = 50%;	[89]				
		Reactive dye – Procion Brilliant Blue RS (100 mg/l)	PAC (0.05 mg/l)	Natural polymer — chitosan (3 mg/l)	Initial $pH = 10$; Temperature = ambient Mixing time = 50 min; Settling time = 60 min	Colour removal = 65%;	[89]				
		Acid dye — Sandolan Red RSNI (100 mg/l)	PAC (0.05 mg/l)	Natural polymer — chitosan (3 mg/l)	Initial $pH = 10$; Temperature = ambient Mixing time = 50 min; Settling time = 60 min	Colour removal = 90%;	[89]				
		Direct dye — Kahi Green (100 mg/l)	PAC (0.05 mg/l)	Natural polymer — chitosan (3 mg/l)	Setting time = 60 min Initial $pH = 10$; Temperature = ambient Mixing time = 50 min; Settling time = 60 min	Colour removal =>95%;	[89]				
		Acid dye — Sandolan Red RSNI (100 mg/l)	PAC (0.05 mg/l)	Polyacrylamide- seed gum (3 mg/l)	Initial $pH = 9.5$; Temperature = ambient Mixing time = 21 min; Settling time = 60 min	Colour removal =>90%;	[89]				
	conditions	Real textile wastewater	PAC (0.1 mg/l)	Polyacrylamide- seed gum (0.5 mg/l)	Setting time = 60 min Initial $pH = 8.5$; Temperature = ambient Mixing time = 21 min; Settling time = 60 min	Colour removal = 80% (at λ = 499) and 55% (at λ = 313); Removal of suspended solid = 80%	[146]				
VOCAB: (w/definition)		flux: the rate o	of mass transp	ort (e.g. fluid, g	as, or solute) a	across the membra	ane per				
Cited references to follow up on	Badro perfor	Katayon, S., Megat Mohd Noor, M. J., Kien Tat, W., Abdul Halim, G., Thamer, A. M., & Badronisa, Y. (2007). Effect of natural coagulant application on microfiltration performance in treatment of secondary oxidation pond effluent. <i>Desalination</i> , 204(1–3), 204–212. <u>https://doi.org/10.1016/j.desal.2006.03.541</u>									
Follow up Questions	Can one obtain the natural polymer from organisms directly? Is there a way to effectively remove coagulants from wastewater? What is the effectiveness of natural coagulants when applied to methylene blue?										

Article #7 Notes: Recent advances in polymer composite, extraction, and their application for wastewater treatment: A review

Source Title	Recent advances in polymer composite, extraction, and their application for wastewater treatment: A review
Source citation (APA Format)	Saravanan, A., Thamarai, P., Kumar, P. S., & Rangasamy, G. (2022). Recent advances in polymer composite, extraction, and their application for wastewater treatment: A Review. <i>Chemosphere</i> , <i>308</i> , 136368. <u>https://doi.org/10.1016/j.chemosphere.2022.136368</u>
Original URL	https://www.sciencedirect.com/science/article/pii/S0045653522028612
Source type	Journal Article
Keywords	Water pollution, Wastewater treatment, Natural polymers, Polymers extraction, Membrane separation, Adsorption
#Tags	Natural polymers, Wastewater and its impacts on environment, Extraction methods, Applications in wastewater treatment
Summary of key points + notes (include methodology)	The article is a review on the use of natural polymers in wastewater treatment Chitin: A natural polymer which can be found in some insects and crustaceans. It can also be produced by fungal fermentation. Can treat a wide range of pollutants. Cellulose: Can be found in plants, algae and some bacteria (bacteria's cellulose lacked wax, lignin, pectin and hemicelluloses). Cellulose has broad application in the treatment industry. Gelatin: Gelatin beads provide support for degradation of micro pollutants. Alginate: Adsorbed heavy metal ions by developing an insoluble gel structure. Effluents treatment: Membrane filtration: using polymers to create membrane with increase permeability, pollutants rejection, prevent fouling, and make the cleaning process of membranes easier. Adsorption: Shown in the table (Polymer adsorbent for the removal of toxic pollutants from wastewater). Overall, all the polymers worked well, but they require an optimal condition. However, in general, polymers are best used to remove dyes from wastewater. Coagulation: Used to remove suspended and color pollutants from water. Organic polymers produced less toxic sludge than inorganic polymers. However, natural coagulants are not as effective in treating water with high turbidity. Flocculation: Bio-flocculants are not used on a wide scale. However, they have the potential to become viable flocculants which provide a green approach to flocculation as inorganic flocculants are toxic to human health.
Research Question/Problem/ Need	What is the effectiveness and usage of organic polymers in wastewater treatment?

Important Figures

S. No	Natural Polymers	Functional groups	Extraction/Synthesis method	Source of Wastewater	Treatment Technology	Removal Percentage	References
Plant	Origin						
1.	Cellulose	-COOH, –OH	Alkalization, bleaching, Acid hydrolysis process	Remazol Dye	Adsorption	95.90%	Janaki et al. (2013
2.	Starch	Acetal	wet milling process and alkali method	Filter backwash water	Flocculation	94.00%	Macczak et al., 2022
3.	Pectin	Carboxyl, hydroxyl, and acylamino groups	Water bath heating method	Textile wastewater	Coagulation and flocculation	54.20%	Wei et al., (2018)
				Methylene blue dye	Adsorption	45.00%	Aisyah et al. (2014
4.	Gums	-COOH	Mechanical process of roasting, differential attrition, sieving and polishing	Direct dyes	Coagulation and flocculation	> 70.00%	Sanghi et al. (2006
5.	Hemicellulose	-СООН, –ОН	Microwave assisted extraction	Petroleum industry wastewater	Coagulation and flocculation	95.40%	Peng et al. (2020)
6.	Tannin	C0, CC, COC	Maceration	Crystal violet dye	Coagulation and flocculation	89.00%	Aboulhassan et al (2016)
7.	Inulin	-COOH, -OH	Pulsed Electric field extraction	Municipal sewage wastewater	Flocculation	62.00%	Rahul et al. (2014
	al Origin						
8.	Gelatin	-NH ₂ , _OH, _COOH	Acid treatment, Alkaline treatment	Plant wastewater	Coagulation	73.6%	Tawfik et al. (2021)
9.	Collagen	Amide or carboxylic acid	Chemical and enzymatic hydrolysis	Dyes	Adsorption	83.86%	Shalaby et al. (2021)
10.	Chitin	Amyl group	Demineralization and Deproteinization	Dyes, Metallic ions	Adsorption	94.00%	Ribeiro and dos Santos (2019)
11.	Chitosan	-NH ₂ , –OH	Deacetylation	Wastewater from ghee industry	Coagulation and flocculation	72.5%	Nechita (2017)
				Palm oil mill effluent	Coagulation and flocculation	95.24%	Jagaba et al. (2018)
12.	Hyaluronic Acid	-СООН,-ОН	Enzyme Assisted Extraction	Manganese (Mn) Heavy metal	Adsorption	88.8%	Tasdelen et al. (2021)
13.	Resin (Ion exchange)	Quaternary ammonium or amine groups	Solvent Extraction	Olive oil-washing wastewater	Adsorption	57.3%	Camacho et al. (2021)
Micro	obial Origin						
14.	Alginate	-COOH,-OH	Alkali treatment	Textile wastewater	Adsorption	97.00%	Sharmila et al. (2021)
15.	Dextran	-COOH,-OH	Alcohol Precipitation	Coal-washing sewage	Flocculation	86.60%	Li et al. (2016)

Different extraction methods of natural polymers.

S.	Natural	Adsorbent	Pollutant	Parameters	s			Removal	Adsorption	Modeling		References
No	Polymer			pH	Temp	Time	Dose	Percentage	Capacity (mg/g)	Isotherm	Kinetics	
L	Cellulose	Cellulose fibers from corn straw as oil sorbent	Marine oil spills	6.2	25 °C	7 h	0.005 g	90%	6.754	Langmuir	Pseudo- Second-order	Li et al. (2013)
2.		Nanocellulose fibers	Pb (II)	6.0	50-900 °C	40	0.5 g	91.71% 88.79%	9.42 9.7	Freundlich and	Pseudo- Second-order	Kardam et al. (20
			Cd (II) Ni (II)			min		82.61%	8.55	Langmuir	Second-order	
3.		TEMPO -oxidized fibers	Cr (III)	5.0	20 °C	20 h	0.1 g	62.5%	58	Langmuir	Pseudo-	Schaqui et al., 20
			Ni (II) Zn (II)	6.0 6.0				58.6% 68.4%	49 66		Second-order	
4.		Phosphorylated nanocellulose	Ag (I)	7.0	20 °C	3 h	0.2 g	60%	120	Langmuir	Pseudo-	Liu et al. (2015)
			Fe (III) Cu (II)					14.5% 40.7%	73 114		Second-order	
5.		APTS modified microfibers	Ni (II)	5.0	22 °C	5 min	0.86 g	83%	160.47	Langmuir	Pseudo-	Hokkanen et al.
			Cu (II) Cd (II)					75% 97%	200.17 471.56		second-order	(2014)
6.		EDTA modified microfibers	Pb (II)	5.0-9.0	23 °C	60	5 g	92%	227.3	Temkin	Pseudo-	d'Halluin et al., 2
7.		MBCNF/GOPA	Cd (II) Malachite	7.0	24.85 °C	min 20	5 mg	96% 91%	102 270.27	Langmuir	Second-order Pseudo-	Arabkhani and
1.		MBGNP/GOPA	green	7.0	24.03 C	min	5 mg	9176	2/0.2/	Langinum	second-order	Asfaram (2020)
8,	Chitin	Chitin nanofibrils with cysteine	As (III)	7.0	20 °C	24 h	100 g	75%	149	Langmuir	Pseudo- Second-order	Yang et al. (2015
9.		Ultrasonicated chitin	Methylene blue	4.5	25 °C	370 min	10 mL/ min	51.5%	51.8	Dynamic model	Pseudo- Second-order	Dotto et al. (2019
10,		Chitin/clay microsphere	Methylene blue	1.0-11.0	30 °C	20 min	10 mg/g	99.9%	156.7	Langmuir	Pseudo- Second-order	Xu et al. (2018)
11.		Chitin-bentonite composite	Cr (VI)	4.0	-	45 min	1.0 g	91%	443.71	Freundlich and Langmuir	Pseudo- Second-order	Saravanan et al. (2013)
12.		Chitin nanofibrils with maleic acid	Au (III)	4.0	4 °C	10 min	1.0 g	75%	532.5	Langmuir	Pseudo- Second-order	Dwivedi et al. (20
13.		Chitin suspensions after enzymolysis	Congo red	6.0	20 °C	60 min	2 mg	90%	232	Langmuir	Pseudo- Second-order	Hou et al. (2021)
14.		Chitin	Eriochrome black T	5.0	25 °C	3 h	1.0 g	99%	167.31	Langmuir	Pseudo- Second-order	Boumya et al. (20
15.		Ultrasound modified α -chitin (UCHT)	Methylene blue	8.0	369 °C	80 min	0.5 g	48%	95	Langmuir	Pseudo- Second-order	Ablouh et al. (20)
16.		MGO/CH NC	Methylene blue	8.0	24.85 °C	5 min	20 mg		332.61	Langmuir	Pseudo- Second-order	Gautam and Hoo (2020)
17.		MGO/CH NC	Crystal violet	9.0	24.85 °C	5 min	20 mg	0.51	403.78	Langmuir	Pseudo- Second-order	Gautam and Hoo (2020)
18.	Chitosan	Chitosan beads with carboxymethyl groups	Cu (11)	5.0	40 °C	24 h	6.0 mmol dm ⁻³	99.98%	130	Langmuir	Pseudo- Second-order	Yan et al. (2011)
19.		Chitosan spun hollow fiber with iron oxide nanoparticles	Se (IV)	3.5-9.5	40 °C	5 h	1.0 g	89%	15.62	Freundlich and Langmuir	Pseudo- second-order	Dorraji et al. (20
20,		Magnetic carboxymethyl chitosan/branched PEI	Pb (II)	4.5	30 °C-50 °C	10 min	0.4 mg/L	85%	124.0	Langmuir- Freundlich	Pseudo- second-order	Wang et al. (201)
21.		Silica gel-chitosan	Fluoride	7.0	30 °C	30 min	0.1 g	45%	1.55	Langmuir- Freundlich	Pseudo- second-order	Viswanathan et a (2014)
22.		Chitosan/Polyurethane foam	Acid violet	3.0-11.0	30 °C	24 h	0.1 g	58%	29.6	Langmuir	Pseudo- Second-order	Lee et al. (2009)
23.		Chitosan-tapioca peel biochar (S- CS @TB composite)	Malachite green	8.0	350 °C	120 min	10 mg	-	53.35	Langmuir	Pseudo- Second-order	Vigneshwaran et (2021)
24.		Chitosan-tapioca peel biochar (S- CS @TB composite)	Rhodamine B	8.0	350 °C	120 min	10 mg	1	40.86	Langmuir	Pseudo- Second-order	Vigneshwaran et (2021)
												(continued on next p

	Table S.	2 (continued) Natural	Adsorbent	Pollutant	Parameter	5			Removal	Adsorption	Modeling		References
	25.	Polymer	CS-BmImBr impreganated	Methylene	рН 11.0	Temp 25 °C	Time 25	Dose 4 mg	Percentage 86%	Capacity (mg/g)	Isotherm Type II	Kinetics Pseudo-first-	Karimi-Maleh et al.,
	26.		chitosan beads Chitosan -CNTs	blue Pb (II)	2.0	25 °C	min 1 h	1 g	89.36%	83.20	Langmuir	order Pseudo-	2021 Wang et al. (2020b)
	27.	Alginate	Alginate beads with nano- geothite	Congo red	3.0	30 *C	180 min	0.07 g	94%	181.1	Langmuir	Second-order Pseudo- Second-order	Munagapati and Kim, 2017
	28.		Alginate beads with bentonite	Methylene blue	2.5-10.0	25 °C	48 h	0.2 g	89.7%	799.4	Langmuir	Pseudo- second-order	Djebri et al. (2016)
	29. 30.		Alginate with carbon nanotubes Alginate beads with bentonite	Cu (II) Methylene	2.1	25 °C 30 °C	2 h 1 h	0.05 g	69.9% 70%	84.88	Langmuir- Freundlich Freundlich	Pseudo- second-order Pseudo-	Li et al. (2010) Benhouria et al.
	31.	Hemicellulose	and activated carbon C6-acetylated,C2,C3-	blue Malachite	6.5	50 °C	60	5.0 mg	67%	456.23	Freundlich	second order Pseudo-	(2015) Gautam et al. (2018)
	32.		carboxylated hemicelluloses Hemicelluloses with PEGDE	green Methylene blue	5.0	25 °C	min 300 min	0.1 g	80%	148.8	Langmuir- Freundlich	second order Pseudo- second order	Cheng et al. (2016)
	33.		Hemicellulose containing latex	Methylene blue	3.0-7.0	25 °C	24 h	0.1 g	93.8%	42.73	Langmuir	Pseudo- Second-order	Zhang et al. (2015)
	34. 35.	Starch	C6-carboxylated starch hydrogel Starch NiFE-LDH composite	Cu (II) Methyl orange	7.0 3.0	40 °C 25 °C-45 °C	2 h 5 min	0.1 g	81% 90%	128.26 358.42	Langmuir- Freundlich	Pseudo- second order Pseudo-	Chauhan et al. (2010) Zubair et al. (2018)
	36.		Starch-g-polyacrylic acid	Cu (II)	2.7-5.0	25 °C-45 °C	5 min 60	50 mg	42%	2.83	Langmuir	second order Pseudo-	Zheng et al. (2010)
	37.		Starch-g-N,N-Diethyl aminoethyl	Direct red 81	10.0	30 °C	min 50	2.5 g	95%	112	Langmuir	second order Pseudo-	Abdel-Halim, 2013
	38.	Cyclodextrin	methacrylate Chitosan/cyclodextrin/ glutaraldehyde	Methyl orange	5.0	25 °C	min 600 min	10 mg	90.96%	392	Langmuir	second order Pseudo- second order	Jiang et al. (2018)
			ng different pollutants ir				ers	and	l their	effectiv	reness	s in ads	sorping
	<u> </u>												
VOCAB: (w/definition)	Pol	ymerio	: Membrane:	: A thir	n, ser	niper	mea	able	barrie	r betwee	en two	gaseo	JS
	pha	ases.											
	Sor	ption:	a phenomer	non of	bindi	ng of	ag	as or	^r vapoi	r by a so	rbent	substar	nce in a
		•	d state (solic			-	-		•	•			
	001	lacinoc			anay		5	0001	intense				
Cited references to follow													
	Dor		Villanuova		Cán	-hoz				luaroz \	1 8 0	onollo	
up on	Per		., Villanueva,									-	
		(20	20). Low cos	t and r	eger	erab	le co	omp	osites	based o	n chiti	n/bento	onite for
		the	adsorption	notent	ial ei	nergi	ngi	oollu	tants	Annlied	Clay S	cience	194
						-					city 5	ciciice,	194,
		105	5703. <u>https:/</u>	/doi.or	'g/10	.1016	<u>5/].(</u>	clay.	2020.1	05703			
	Per	ıg, B., `	Yao, Z., Wan	g, X., C	rom	been,	M.	, Swe	eenev,	D. G., 8	، Tam,	K. C. (2	020).
		-		-					-				
		Cer	lulose-based	mater	Tais I	n was	stev	vate	rtreat	ment of	petro	leum in	austry.
		Gre	en Energy &	amp; E	Envir	onme	nt,	5(1),	37–49	Э.			
		htt	ps://doi.org/	10 101	16/i g	700 2 (019	09.0	03				
		<u></u>	05.77 001.0157	10.101	- 0/]-8		015	.05.0	<u>/05</u>				
					_								
	Doi	ng, X.,	Lu, D., Harris	5, T. A.,	& Es	scoba	r, I.	C. (2	2021).	Polymei	rs and s	solvent	s used in
		me	mbrane fabr	ication	: A r	eview	/ foo	cusin	ig on s	ustainak	ole me	mbrane	2
									0				
			elopment. Λ			-							
		htt	ps://doi.org/	<u>10.339</u>) 0/m	embr	ane	es11(<u>)50309</u>	<u> </u>			
	L												
	7h	ю С [.]	Zhou, J., Yan	Y Va	ngl	Xind	л с	Li	Η \\/,	ι Ρ \\/=	ang M	& 7h4	ng Η
					-		-				-		
	L	(20	21). Applicat	ion of	coag	ulatio	on/f	1000	ulatior	n in oily	wastev	water	
	L	trea	atment: A Re	eview.	Scier	ce of	The	e Tot	al Env	ironmen	nt, 765.	14279	5.
			ps://doi.org/			-					,,	-	
		ntt	ps.//u01.01g/	10.10	10/].5		env	.2020	0.1427	33			
	El-C	Gaayda	a, J., Titchou,	F. E., (Jukh	rib, R	., Ya	ap, P	S., Li	u, T., Ha	imdani	, M., &	Ait
	l –		our, R. (202					•					
	L			-									
		cor	itaining dyes	or hea	avy n	netals	5: A	state	e-of-th	e-art re	view. J	ournal	of

	Environmental Chemical Engineering, 9(5), 106060. https://doi.org/10.1016/j.jece.2021.106060
Follow up Questions	How to improve the effectiveness of natural polymers? Can bacteria be genetically modified to produce chitin, cellulose, etc.? How do natural polymers compare to synthetic ones?

Article #8 Notes: Enhanced biological wastewater treatment using sodium alginate-immobilized microorganisms in a fluidized bed reactor

Source Title	Enhanced biological wastewater treatment using sodium alginate-immobilized microorganisms in a fluidized bed reactor
Source citation (APA Format)	Bustos-Terrones, Y. A., Bandala, E. R., Moeller-Chávez, G. E., & Bustos-Terrones, V. (2022). Enhanced biological wastewater treatment using sodium alginate- immobilized microorganisms in a fluidized bed reactor. <i>Water Science and</i> <i>Engineering</i> , <i>15</i> (2), 125–133. <u>https://doi.org/10.1016/j.wse.2022.02.002</u>
Original URL	https://www.sciencedirect.com/science/article/pii/S1674237022000163?via%3Dihub
Source type	Journal Article
Keywords	Domestic wastewater, Basic blue 9, Immobilized microorganisms, Fluidized bed reactor, Sodium alginate
#Tags	Fluidized bed reactor
Summary of key points + notes (include methodology)	Methods: Using simulated textile wastewater with a concentration of BB9 dye measured by a spectrophotometer, the researchers put sodium-alginate beads containing immobilized microorganisms into the solution. The fluidized bed reactor is a tube that was pumped with air to make the SA beads suspending in the water. The scientist measures the oxygen uptake rate by aerating the beads until they are filled with dissolved oxygen which will be measured in a 30-minute interval to plot a DO to time graph. Results: The beads work in the pH range of a typical treatment plant, and there were pores to allow diffusion of particles. The SA beads degrade toxic pollutants well as time went on as shown by Figure 5. Furthermore, the treatment of BB9 dye is

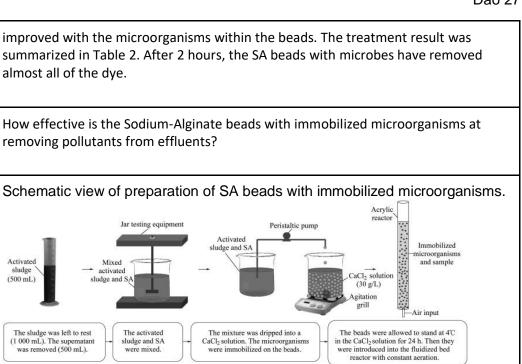
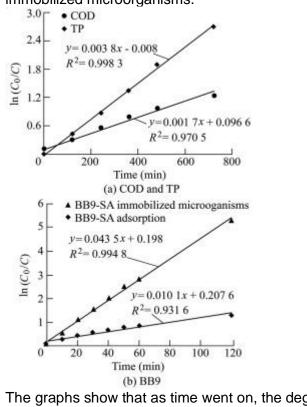



Fig. 5 Kinetics of degradation of COD, TP, and BB9 with SA and SAimmobilized microorganisms.

almost all of the dye.

Mixed

activated

sludge and S

The makings of SA beads

Activated

sludge

(500 mL)

The sludge was left to rest (1 000 mL). The supematant was removed (500 mL).

Research

Need

Question/Problem/

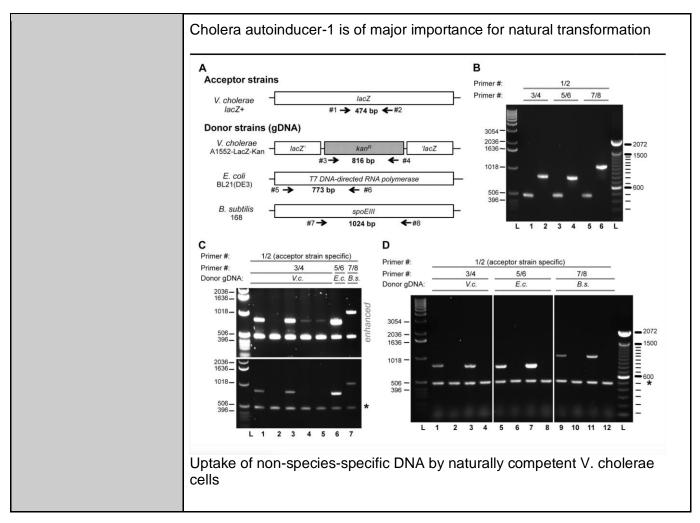
Important Figures

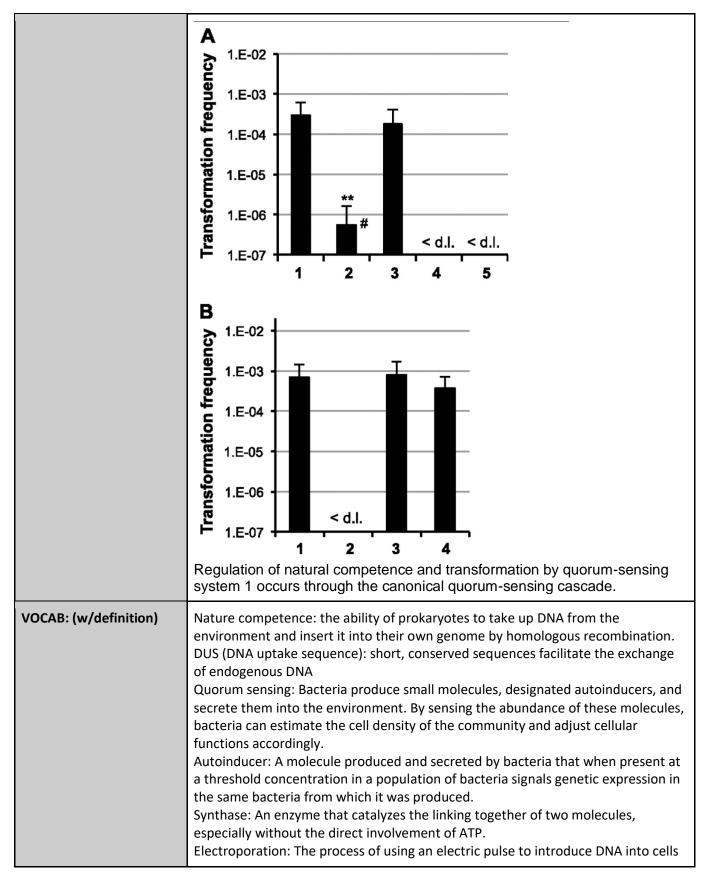
The graphs show that as time went on, the degradation of COD, TP, and BB9 increases. BB9 adsorption with the microorganisms is significantly higher.

	Statistical su	mm	arv of I	BB9 degrad	lation by SA	heads			
	Table 2 Statistical summary of BB		-	_		- Deaus.			
	Treatment	Time (min)	Degree of freedom	Minimum concentration (mg/L)	Maximum concentration (mg/L)	Average concentration (mg/L)	Standard deviation (mg/L)	Coefficient of variation (%)	
	With microorganisms	0 10 20 30	3 3 3 3	9.53 5.65 3.13 1.70	9.87 5.90 3.22 2.00	9.69 5.77 3.19 1.85	0.140 0.135 0.041 0.153	1.45 2.34 1.28 8.25	
		40 50 60	3 3 3	0.98 0.50 0.36	1.14 0.57 0.42	1.03 0.54 0.40	0.074 0.032 0.025	6.25 7.20 6.00 6.22	
		90 120	3 3	0.26 0.15	0.33 0.27	0.29 0.20	0.029 0.046	9.95 22.33	
	Without microorganisms (adsorption)	0 10 20 30	3 3 3 3	9.44 8.45 7.04 6.29	9.86 8.62 7.87 6.87	9.64 8.52 7.43 6.65	0.175 0.072 0.361 0.253	1.82 0.85 4.85 3.80	
		40 50 60 90 120	3 3 3 3 3	5.89 5.35 4.92 4.14 3.59	6.23 5.46 5.16 4.56 3.99	6.03 5.42 5.02 4.29 3.76	0.145 0.053 0.105 0.184 0.170	2.41 0.98 2.08 4.29 4.53	
		240 360 480 1 440	3 3 3 3 3	2.56 2.01 1.51 1.02	2.99 2.37 1.81 1.56	2.78 2.11 1.70 1.16	0.174 0.173 0.137 0.265	6.25 8.21 8.04 22.78	
	Note that the	ori	ginal co	oncentration	n for BB9 is	around 9.6	3 mg/L		
VOCAB: (w/definition)	Fluidized Bed upward flow o Michaelis–Me of enzyme-cat	of flu nter	iid. n mode	I: A general e			-	a vertical ss mechanism	
Cited references to follow up on	Çifçi, D. İ., Atav, R., Güneş, Y., & Güneş, E. (2019). Determination of the color removal efficiency of laccase enzyme depending on dye class and chromophore. <i>Water Science and Technology</i> , <i>80</i> (1), 134–143. https://doi.org/10.2166/wst.2019.255								
Follow up Questions	How effective How to sustain What other m adsorption of	habl ater	y obtaiı ials can	n sodium alg i be used to	inate?		ay provide	e more	

Article #9 Notes: Application of coagulation/flocculation in oily wastewater treatment: A review

Source Title	Application of coagulation/flocculation in oily wastewater treatment: A review
Source citation (APA	Zhao, C., Zhou, J., Yan, Y., Yang, L., Xing, G., Li, H., Wu, P., Wang, M., & Zheng, H.
Format)	(2021). Application of coagulation/flocculation in oily wastewater treatment: A


	Review. <i>Science of The Total Environment</i> , 765, 142795. https://doi.org/10.1016/j.scitotenv.2020.142795
Original URL	https://www.sciencedirect.com/science/article/pii/S0048969720363245?via%3Dihub
Source type	Journal Article
Keywords	Coagulants/flocculants, Coagulation mechanism, Demulsification, Cost estimation, Combined technology
#Tags	Natural polymeric flocculants, Evaluation of coagulants/flocculants, 3.1.2. pH, 3.1.4. Temperature
Summary of key points + notes (include methodology)	The author compiles many research articles to generate an overview of this wastewater treatment method. Coagulation/flocculation efficiency increases with the dosage of the coagulant/flocculant. However, there is an upper limit to this as when there is too much coagulant, the oils stabilize in small areas, and do not merge with each other. For coagulation to occur, the coagulant destabilizes the oil for them to clump up. pH affects the coagulation process because it affects how the coagulant will neutralize charges of the oils. For oil concentration, lower oil concentration in the wastewater will often produce a satisfactory result, because as the oil concentration rises in the wastewater, saturation becomes an issue as the coagulant could not destabilizes the charges of the oil molecules even with more coagulant is added. Cold temperature affects coagulation by slowing down the speed of the hydrolysis reaction, so the coagulant takes a longer time to destabilize oils. This is because hydrolysis needs to absorb heat to occur, the frequency of particles interaction is decrease, and the water is more viscous which slows flocculation. High temperature can denature the polymers used for coagulation and makes coagulated oils unstable which breaks the flocs. More natural polymers are needed for coagulation than synthetic polymers, but natural polymers denser flocs, are environmentally friendly, and are cheaper. Cationic polymers attract negatively charged oils and create a chain of molecules via this process. Anionic polymers help fortify the particle flocs formed this way. Of all organic polymers, chitosan (a derivative of chitin) shows the best performance due to its high positive charge.
Research Question/Problem/ Need	How effective is coagulation/flocculation treatment of wastewater?


Important Figures		Creaming	•	The start	si on/	floccula	E	(Internation Co	I Constanting of the second se		Ð	Sedir	nentation
	emulsion Most common coagulation/flocculation process in oily wastewater: creaming, coagulation/flocculation, coalescence and sedimentation.					ming,							
	Applications of various natural polymeric flo Flocculant	Oily wastewater type		Dosage (mg/L)	Influent	entration Removal		Removal	Initial	ided solids Removal		Removal	Refs
	Chitosan	Palm oily wastewater	4	500	(mg/L) 2000	rate (%) >99	(mg/L) 50,000	rate (%) /	(mg/L) 990	rate (%) 97.7	NTU 550	rate (%) /	(Ahmad et al.,
	CS(56%)-g-PDBC(44%) Amphoteric chitosan-based grafting flocculants (CM-chi)-g-PDMDAAC(5)	Petrochemical oily wastewater oil recovery wastewater	7.3 7.2	500 2.8	2954 /	99.58 /	8400 3162	82.1 98.88	2675 154	95.4 99.3	2755 /	98.5 /	2006) (Lü et al., 2019) (Peng et al.,
	Quaternized chitosan-grafted magnetic nanoparticles Starch-acrylamide(1:3)	Diesel-in-water emulsion Grease wastewater	4,7,10 5.5	17,17,19 8	2000 /	>95 /	/ 2840	/ 45.64	/ /	/	/	/ /	2018) (Lu et al., 2018) (Zheng et al.,
	Modified starch	Simulating oily wastewater	9	22.4	1200	88.2	3775	95.7	/	/	400	97.1	2008) (Chi et al., 2009)
	Comparison of natu				emo	ving	oils	from	was	stewa	ter		
	A summary of diverse coagulants/flocculants i Coagulants/flocculants Represen		Dose (1		I range	Tem	iperature	Floc pro Size		pactness	Efficienc	y Price	Toxicity
	Synthetic polymeric flocculants PAM, CP. Natural polymeric flocculants Chitosan	n, starch, cellulose	High Moder Moder	ite W ite W	oderate (5 ide (2—12 ide (2–12	2) Inse) Inse	sitive nsitive nsitive	Moderat Big Big	Mod Mod	erate erate	Moderat Good Good	High Low	High (Al ³⁺) High (AM-) Low
VOCAP. (w/definition)	Rudimentary compa Particle bridging: the												
VOCAB: (w/definition)	multiple particles, res Demulsify: to undergo permanently broken o	ulting in o or caus	the e to	inkaរូ unde	ge of ergo a	these proc	e par	ticle					10
Cited references to follow up on	Ahmad, A. L., Sumathi, S., & Hameed, B. H. (2006). Coagulation of residue oil and suspended solid in palm oil mill effluent by Chitosan, alum and pac. <i>Chemical</i> <i>Engineering Journal</i> , <i>118</i> (1–2), 99–105. <u>https://doi.org/10.1016/j.cej.2006.02.001</u>												
Follow up Questions	What would a system incorporating coagulation/flocculation and biological treatment method look like? How to control the pH and temperature of wastewater prior to the treatment? Could the polymers used in coagulation/flocculation be recycled and used again?												

Article #10 Notes: Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner

Source Title	Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner			
Source citation (APA Format)	Suckow, G., Seitz, P., & Blokesch, M. (2011). Quorum sensing contributes to natural transformation of vibrio cholerae in a species-specific manner. <i>Journal of Bacteriology</i> , <i>193</i> (18), 4914–4924. <u>https://doi.org/10.1128/jb.05396-11</u>			
Original URL	https://journals.asm.org/doi/10.1128/jb.05396-11			
Source type	Journal Article			
Keywords	Quorum sensing, natural transformation, autoinducer, plasmid			
#Tags	Uptake of non-species-specific DNA by naturally competent V. cholerae cells. Decrease in the transformability of V. cholerae strains with defects in autoinducer synthesis. Regulation of natural competence and transformation by quorum-sensing system 1 occurs through the canonical quorum-sensing cascade.			
Summary of key points + notes (include methodology)	Vibrio cholerae live with zooplankton that have a chitinous shell, so there is much free-floating chitin, and this helps the bacteria to recombine DNA and transform. The DNA was thought to be consumed as food for the bacteria, but several findings challenge this conjecture. They hypothesized that V. Cholerae can uptake other species DNA using a DUS, and another feature. This is because the DUS of V. Cholerae is unusually short, so it may not be the sole reason to encourage genetic uptake. Bacteria secrete autoinducers for other bacteria to notice to change their cellular function for the community. Because the largest contributor to transformation in quorum sensing is the CAI-1 autoinducer, quorum sensing contributes to species-specific transformation. Methods: DNA strains and plasmids from V. Cholerae are used. Cultures are made in Lysogeny broth. Some plasmids were removed from the bacteria which cause the formation of different DNA strains. These DNA strains make able the differentiation from autoinducer sensing to autoinducer producing strains. Chitin flakes were provided as a source of carbon bacteria to induce transformation. Cells			

Pacaarsh	removed from chitin flakes by vortexing and centrifuge into pellets. The control is the V. Cholerae with much lower primer content. The number of acceptors that cells released is measured and DNA uptake of gDNA by V. Cholerae from interspecies bacteria. Results: After analyzing the diagrams, it can be concluded that the DNA uptake is stored in the periplasmic zone. Therefore, interspecific transformation was not demonstrated for V Cholerae. Hence, the DNA uptake process does not depend on species. Additionally, quorum sensing of intraspecies affects transformation in V. Cholerae. Discussion: Bacteria were originally thought to take up only certain DNA, but this distinction was blurred with this experiment as V. Cholerae does not distinguish between the gDNA of donor bacteria that is not in the same species. However, quorum sensing of intraspecies does affect the rate of transformation. Furthermore, CAI-1 prevent V. Cholerae to form biofilms which will prove as an effective treatment for these bacteria						
Research Question/Problem/ Need	Does quorum sensing contribute to the transformation of Vibrio Cholerae?						
Important Figures		LCD	CqsA LuxS √→ ↓ CAI-1 AI-2		HCD		
	Autoinducer	few			many		
			CqsS	↓ LuxPQ			
	LuxO protein	~® (active)	LuxO		de~℗ _(inactive) ★		
			1				
	HapR protein	Absent *	HapR		Present		
		7 100 0111					
	Natural transformation	OFF	comEA dns		ON		
	Model of how quorum sensing contributes to natural transformation						
	Autoinducer-producing (autoinducer produc		Autoinducer-sensing (autoinducer produ		Transformation frequency ^b (±SD)		
	A1552" <i>str</i> " (C ⁺ , A ⁺)		None		1.4 × 10 ⁻⁴ (±1.3 × 10 ⁻⁴)		
	None		A1552∆cqsA∆luxS" <i>str</i> " (–)		<d.l.< th=""></d.l.<>		
	A1552ΔcomEA (C ⁺ , A ⁺)		None	<d.l.< th=""></d.l.<>			
	A1552∆comEA (C⁺, A⁺)		A1552∆cqsA∆luxS" <i>str</i> " (–)		1.8 × 10 ⁻⁴ (±1.3 × 10 ⁻⁴)		
	A1552∆comEA∆cqsA (A⁺)		A1552∆cqsA∆luxS" <i>str</i> " (–)	<d.l.< th=""></d.l.<>			
	A1552∆comEA∆luxS (C ⁺)		A1552∆cqsA∆luxS" <i>str</i> " (–)	1.8 × 10 ⁻⁴ (±8.2 × 10 ⁻⁵)			
	Α1552ΔcomΕΑΔcqsAΔluxS (-) Α1552ΔcqsAΔluxS" <i>str</i> " (-) <d.l.< th=""></d.l.<>				<d.l.< th=""></d.l.<>		

	by creating temporary pores in the cell membrane gDNA: DNA found in chromosomes.
Cited references to follow up on	Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, CY., & Schoolnik, G. K. (2005). Chitin induces natural competence in <i>vibrio cholerae</i> . <i>Science</i> , <i>310</i> (5755), 1824–1827. <u>https://doi.org/10.1126/science.1120096</u>
Follow up Questions	Do other bacteria also distinguish between interspecies DNA? Can Vibrio Cholerae be used to treat dyes? Can Vibrio Cholerae be transformed to produce chitin?

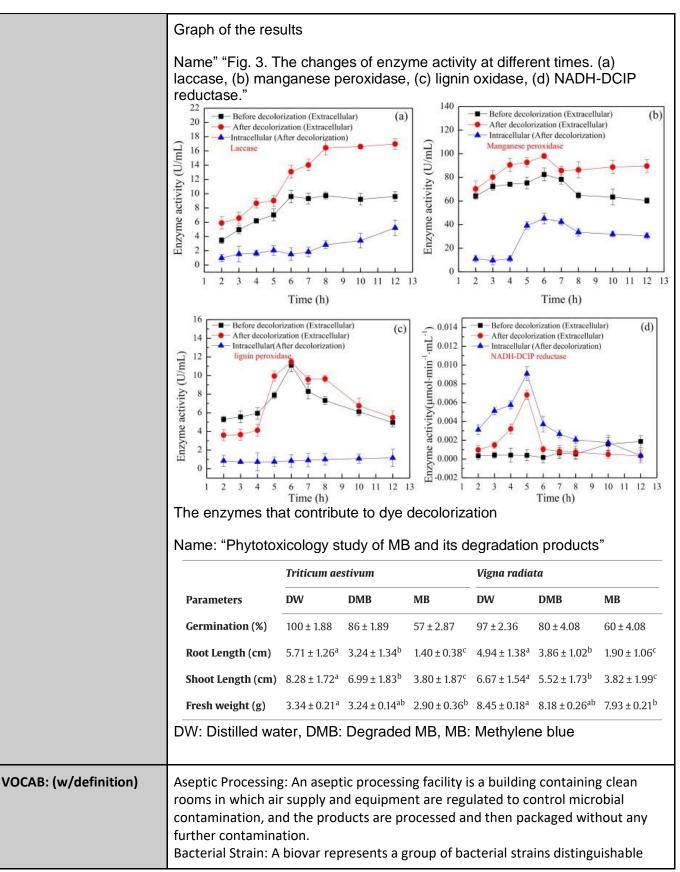
Patent #1 Notes: A kind of dyeing fabric sewage water treatment method

Source Title	A kind of dyeing fabric sewage water treatment method			
Source citation (APA Format)	Yang, J., Du, W., Wu, Y., & Weng, S. (2019). <i>A kind of dyeing fabric sewage water treatment method</i> (C.N. Patent No. CN108558140B). Chinese Patent Agency. <u>https://patents.google.com/patent/CN108558140B/en</u>			
Original URL	https://patents.google.com/patent/CN108558140B/en			
Source type	Patent			
Keywords	Wastewater, dye, recycle, divided			
#Tags	The waste water of serious pollution (for insoluble dye), For dyeing link (for soluble dye), The subsequent technique (removal of particles that are not to be recycled)			
Summary of key points + notes (include methodology)	The invention aims to recycle dyes and reduce the overall expense of wastewater treatment utilizing a biochemical treatment. This is because the previous treatment methods such as coagulation and aerobic biodegradation are inefficient as the dye and polymers are not efficiently recycled. The invention is for textile wastewater before treatment. For insoluble dyes, after the coagulation/flocculation step, the sediments are filtered into the coagulated dyes to be recycled, and other materials that will be removed. Then, evaporate the leftover wastewater and collect the acid that can be reused to wash dyed fabric. Sieve filtration removes particles that are greater than 5mm in length. Air bearing can remove suspended particles that are greater than 0.8mm. Fenton oxidation			

	 removes the rest of the organic particles. For water-soluble dyes, collect them via filtration and precipitation. These methods reduce the pollution level of wastewater before chemical treatment, so less chemical is used, and the materials used in the previous methods are mostly recycled. Hence, carbon adsorption and further filtration can be utilized to clean the remaining waste. Steps: Collected textile wastewater that does not contain dyes, coagulate to remove foreign particles. Evaporate to recycle salts used in the dyeing industry. Textile wastewater with dyes is then separated into soluble and insoluble components which are then subjected to treatment standards This procedure is efficient because of the ease of treating the wastewater due to separating wastewater into different categories that requires a small number of steps to complete. Furthermore, collecting and recycling dyes decreases the cost of wastewater treatment because of reusing materials due to the classification system, and not combining all wastes into one treatment. The dye is recycled from the mud obtained after coagulation. The researchers elaborated that the mud is dried and then smashed to obtain the dye. 										
Research Question/Problem/ Need	How to imp	rove th	e efficienc	cy of wastewa	ater treatment?	•					
Important Figures	that \rightarrow wate finishing \rightarrow follows: fab finishing \rightarrow dyes, reactiv	Cotton fabric dyeing process includes multiple dyeing links, and main flow includes that \rightarrow water is dyed \rightarrow soaped in fabric \rightarrow oxygen bleaching \rightarrow washing \rightarrow \rightarrow final finishing \rightarrow finished product is washed, the dyeing flow of dacron is main are as follows: fabric \rightarrow pre-treatment \rightarrow dyeing \rightarrow reduction cleaning \rightarrow washing \rightarrow final finishing \rightarrow finished product, the dye type being related to mainly include direct dyes, reactive dye, reducing dye, insoluble idol The day colouring power of nitrogen The process of textile dyeing									
	Serial number	рН	CODcr/m g/L	Coloration/ti mes	i Conductivity/µ S/cm	1	10.5- 11.5		939 8	210 00	
	2	10- 10.5	795	6300	8500	3	4.5-5	170 0	275 0	390 0	
	4	5.4- 7.1	856	1100	2200	5	7.1-8.6	600		190 0	
	б	6.9- 7.8	460	798	1356	7	7-7.5	275	410	860	
	8	7-7.5	235	197	770	9	7-7.5	240	103	745	
	10	6-7.5	390	60	712	1 1	6.2-7.2	299	16	700	

	Comparison of different class of textile dyes
VOCAB: (w/definition)	Fenton oxidation: An AOP [Advance Oxidation process] in which the oxidation of organic compounds takes place in the presence of a solution of hydrogen peroxide (H2O2) and iron ions (Fe2+ and/or Fe3+) acting as the catalyst Acid pickling: reaction between an aqueous acid medium and an oxide scale
Cited references to follow up on	Mehmet, S. K. (2020, August 19). Process for recycling sulphur black dye from a dyeing process and producing recycled dye in leuco form (E.P. Patent No. EP3696236A1). European Patent Office. https://patents.google.com/patent/EP3696236A1/en
Follow up Questions	How did the inventor separate wastewater into different categories to be treated differently? Are recycled materials worse than the original materials? Why does the method for extracting dyes from mud to be recycled work?

Patent #2 Notes: Method for treating dye wastewater


Source Title	Method for treating dye wastewater
Source citation (APA Format)	Li, Q., Guo, J., Huan, C., Li, C., & Tu, Y. (2013). <i>Method for treating dye wastewater</i> (C.N. Patent No. CN102659235B). Chinese Patent Agency. <u>https://patents.google.com/patent/CN102659235B/en</u>
Original URL	https://patents.google.com/patent/CN102659235B/en
Source type	Patent
Keywords	Fenton oxidation, dyestuff, decolorization, precipitation
#Tags	comprises following concrete steps (procedure), Fenton oxidation exists (benefits of invention)
Summary of key points + notes (include methodology)	The invention improved upon the Fenton oxidation treatment of wastewater to make it quick and efficient as less amount of acid is used for this process due to the method being independent of pH, large amount of electricity and energy is needed, and catalysts used in the process can be recycle. Fenton oxidation is when Fenton reagent (Fe ²⁺ and H ₂ O ₂) creates many free floating OH molecules to combine with dyes for decomposition. However, Fenton oxidation may produce

	precipitation which causes further pollution. The disadvantages of a Fenton reaction are that it is expensive and can only be used for a small amount of dye. Invention: A method of heterogenous Fenton oxidation that produces oxychlorination of iron which does not need a specific pH, the precipitation is not a pollutant, iron III chloride is insoluble, so the wastewater color does not change which helps with decolorization, utilized less energy, and the iron catalyst can be recycle.
Research Question/Problem/ Need	How to improve Fenton oxidation treatment for better efficiency, and less pollution?
Important Figures	Degradation of methyl orange dye over time with the heterogenous Fenton oxidation reaction
VOCAB: (w/definition)	Oxychlorination: a process for generating the equivalent of chlorine gas (Cl2) from hydrogen chloride and oxygen
Cited references to follow up on	吴, 兆亮., 张, 晓龙., 卢, 珂., & 丁, 红梅. (2010, November 17). <i>Printing and dyeing wastewater processing technique</i> (C.N. Patent No. CN101381178B). Chinese Patent Agency. <u>https://patents.google.com/patent/CN101381178B/en</u>
Follow up Questions	Can this invention be used with highly concentrated dyes in wastewater? How to reclaim the iron catalyst after the reaction? What causes the initial surge in degradation and the leveling off after that?

Article #11 Notes: Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing *Bacillus thuringiensis*: Degradation products and pathway

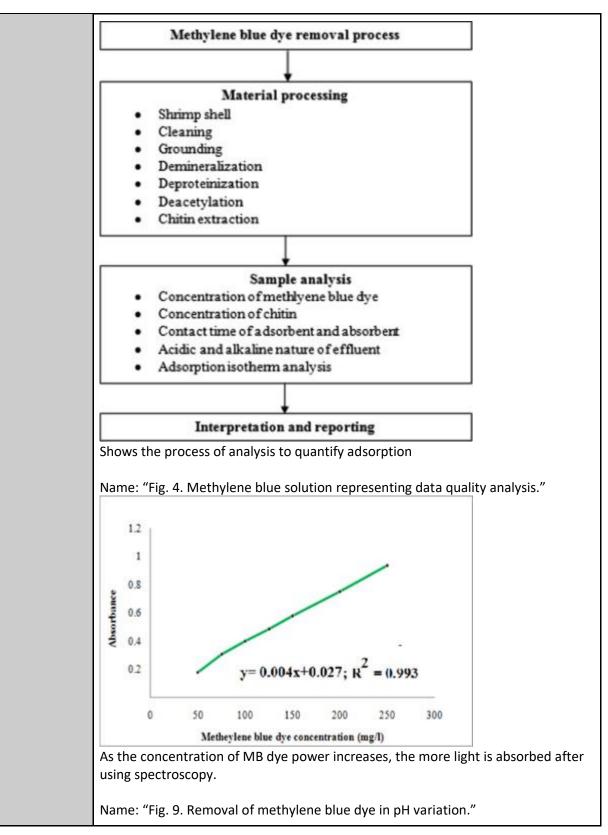
Source Title	Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing Bacillus thuringiensis: Degradation products and pathway					
Source citation (APA Format)	 Wu, K., Shi, M., Pan, X., Zhang, J., Zhang, X., Shen, T., & Tian, Y. (2022). Decolourization and biodegradation of methylene blue dye by a ligninolytic enzyme-producing bacillus thuringiensis: Degradation products and pathway. <i>Enzyme and Microbial Technology</i>, <i>156</i>, 109999. <u>https://doi.org/10.1016/j.enzmictec.2022.109999</u> 					
Original URL	https://www.sciencedirect.com/science/article/pii/S0141022922000187					
Source type	Journal Article					
Keywords	Methylene blue, Bacillus thuringiensis, Biodegradation, Degradation pathway, Phytotoxicity					
#Tags	Chemicals and medium (preparation of simulated wastewater), Isolation of MB degrading bacteria, Enzyme activity.					
Summary of key points + notes (include methodology)	 Methods: Preparation of dyes: Methylene blue without bacteria contamination, and the bacteria environment is a solution of yeast extract, glucose, and other chemicals. Getting the bacteria: Use guaiacol to identify bacteria that produce a specific enzyme, and culture them in agar. Test the bacteria capability to degrade dye by putting a small amount of MB dye and observe the formation of a degradation circle in the agar culture of Luria broth Experiment: Done in a 150ml Erlenmeyer flask with 50 ml of solution of the medium and varying concentration of MB. Enzyme effectiveness: Measured with the absorbance magnitude. One unit of absorbance means that the enzyme converts 1 micromol in 1 minute. => to obtain the best bacterial population for dye degradation Results: pH effects: The most optimal pH was 6, and as the pH deviates from this point, the effectiveness drops due to pH condition affecting enzyme activity by changing the shape of the enzyme and transportation of materials through the cell's membrane. Temperature effects: 30 degrees is optimal, and higher temperature causes cells to be stressed and dye, and denaturation of enzyme. Initial dye concentration: 					

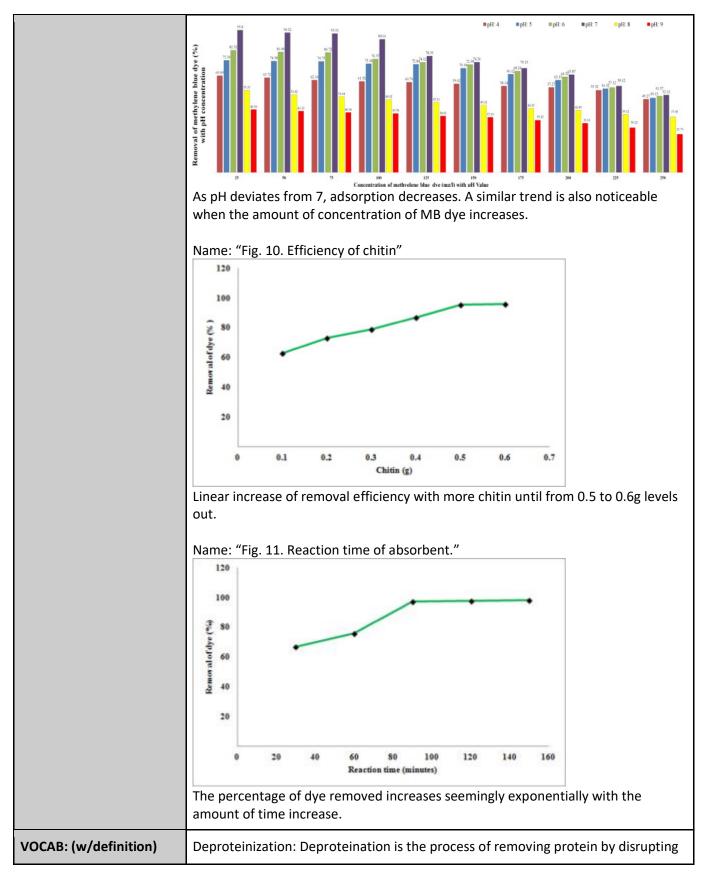
	Dye concentration: As the concentration increases, the removal rate decreases due to saturation of dye relative to the enzyme. Furthermore, this could also be due to the dye being too toxic for the bacteria. Salt concentration: As the salt concentration increases, the decolorization rate decreases due to salt affecting osmosis of the bacteria. However, the decrease is very small showing the bacteria's resistance to salt. Enzyme analysis: 4 enzymes are particularly prevalent to decolorize dyes: laccase, manganese peroxidase, lignin oxidase, and NADH-DCIP reductase which degrade the dye. This conclusion was reached due to the increase in activity of these enzymes while degrading dyes. Degradation results: The MB dyes mostly degrade into less toxic metabolites that are tested by the growth of plants. These metabolites are not truly harmless as they still inhibit the plants' growth, but to a lesser degree than MB dye.
Research Question/Problem/ Need	What is the effectiveness of degradation of Methylene Blue dye by Bacillus thuringiensis?
Important Figures	Name: "Effects of different parameters on the decolorization of MB. (a) pH, (b) temperature, (c) initial dye concentration, (d) rotational speed, (e) NaCl concentration, (f) inoculum." (0) 000 000 000 000 000 000 000 000 000

	from other strains of the same species on the basis of physiological or biochemical characters. Supernatant: Denoting the liquid lying above a solid residue after crystallization, precipitation, centrifugation, or other process. Inoculum: An inoculum can be defined as the population of microorganisms or cells that is introduced in the fermentation medium or any other suitable medium.
Cited references to follow up on	Kishor, R., Saratale, G. D., Saratale, R. G., Ferreira, L. F. R., Bilal, M., Iqbal, H. M. N., & Bharagava, R. N. (2021). Efficient degradation and detoxification of methylene blue dye by a newly isolated ligninolytic enzyme producing bacterium Bacillus albus MW407057. <i>Colloids and Surfaces B: Biointerfaces</i> , 206, 111947. <u>https://doi.org/10.1016/j.colsurfb.2021.111947</u>
Follow up Questions	How effective are other bacteria? Can these bacteria be transformed using a fungal plasmid? How did the bacteria evolved to develop the enzymes suitable for dye degradation?

Article #12 Notes: Construction of the RNAi plasmids to suppress the expression of chitin synthase-encoding genes (chs) in fungus *Mucor lusitanicus*

Source Title	Construction of the RNAi plasmids to suppress the expression of chitin synthase- encoding genes (chs) in fungus <i>Mucor lusitanicus</i>
Source citation (APA Format)	Mai, L. N., Duc, L. M., Quang, D. M., & Trung, T. A. (2024). Construction of the rnai plasmids to suppress the expression of chitin synthase-encoding genes (chs) in fungus mucor lusitanicus. <i>Vietnam Journal of Biotechnology</i> , 22(1), 125– 132. <u>https://doi.org/10.15625/vjbt-20234</u>
Original URL	https://vjs.ac.vn/index.php/vjbt/article/view/20234
Source type	Journal Article
Keywords	chitin, chitin synthase, cell wall, mucormycosis, Mucor lusitanicus
#Tags	Isolation of genomic DNA and plasmids (procedure), PCR and electrophoresis (procedure)

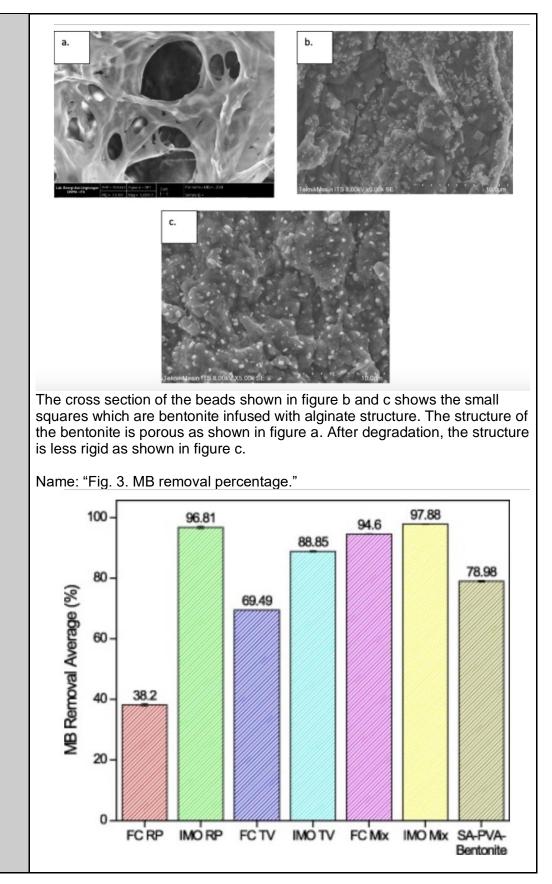

Summary of key points + notes (include methodology)	Mucormycosis is a very difficult fungal infection to cure as the traditional treatment for fungi does not work. The study aims to analyze the gene that codes to create the fungal cell wall as it may be related to the infectiousness of the fungi. Chs1 and Chs2 genes code for chitin synthase, and the use of RNAi plasmid to inhibit the expression of these genes. Method & materials: PMAT1812 was used to promote the production of RNAi. Isolation of bacteria gene and the plasmid dna for transformation. Then, perform electrophoresis where the result is displayed on agarose gel with UV light. Steps for electrophoresis are denaturation, annealing, and extensions. Creating a plasmid with chs1 and chs2 and transforming the bacteria. Next step: putting the plasmid into the fungi to see its effect on the fungi that causes mucormycosis
Research Question/Problem/ Need	Can one construct a plasmid to inhibit chitin production in fungi?
Important Figures	Name: "PCR results of 1 kb fragment from chs1 and chs2 genomic DNA of strain R7B." M chs1 chs2 10 kb - 3 kb - 1 kb - 1 kb - The chs1 and chs2 are successfully transformed into the bacteria Name: "Results of the colony PCR to select the recombinant plasmids for Chs1 gene (A) and Chs2 gene (B)."

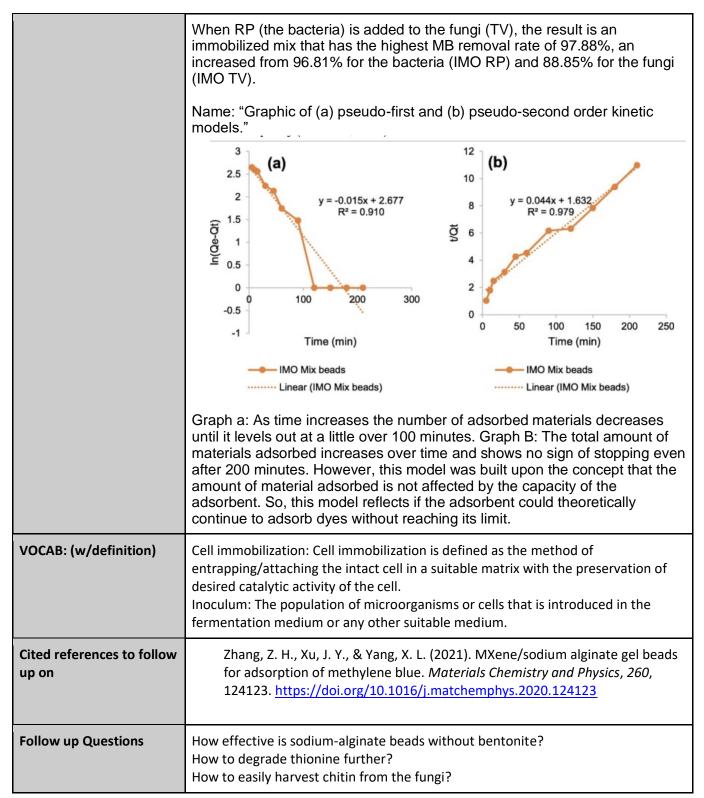

	uns men							• ٢		(+ +2	5410	
	А	м	1	2	3	4	5	6	7	8	9	10
	10kb– 3kb–			-	-				_	-		
	1kb–			e e						lane.		
	B 10kb– 3kb– 1kb–	M	1	2	3	4	5	6	7	8	9	10
	Almost all co	lonies	s of E	coli	succe	ssful	ly tran	sform	ed			
VOCAB: (w/definition)	Recombinatio in chromosom organisms Heat shock me shock, a press created, that i DNA can ente	ies or ethod ure di induce	by the : By ex fferer	e artif kposir ice be	icial jo ng cell: tweer	oining s to a n the o	of seg sudde outside	ments n incre e and t	of DN ease in he ins	IA from temp ide of	n diff peratu the c	erent ire, or heat ell is
Cited references to follow up on	Calo, S., (2012). T initiatior circinello <u>https://c</u>	wo di and a oides.	stinct amplif <i>Molec</i>	RNA- icatio cular l	deper on of R <i>Microl</i>	ndent NA sil p <i>iolog</i>	RNA p encing <i>y, 83</i> (2	olyme g in the 2), 379-	rases a basal –394.	are re	quire	d for
Follow up Questions	How to extrac How much chi Does the trans bacteria?	itin di	d the l	bacte	ria pro	duce	?	-	ly fror	n the	untra	nsformed

Article #13 Notes: Removal of methylene blue dye using shrimp shell chitin from industrial effluents

Source Title	Removal of methylene blue dye using shrimp shell chitin from industrial effluents			
Source citation (APA Format)	Karthi, S., Sangeetha, R. K., Arumugam, K., Karthika, T., & Vimala, S. (2022). Removal of methylene blue dye using shrimp shell chitin from industrial effluents. <i>Materials Today: Proceedings, 66</i> , 1945–1950. <u>https://doi.org/10.1016/j.matpr.2022.05.428</u>			
Original URL	https://www.sciencedirect.com/science/article/pii/S2214785322037488			
Source type	Journal Article			
Keywords	Chitin, Effluent, Methylene blue dye, Shrimp shell, Industrial effluents			
#Tags	Adsorption batch experiment (procedure and calculation for absorption capacity), Adsorption isotherm examination (calculation for adsorption with the adsorbent)			
Summary of key points + notes (include methodology)	Introduction: Chitin is extracted from crustaceans, especially shrimp, through the deproteinization and demineralization process. Chitin was proven to be able to remove heavy metal from textile effluent. Methods: Here, chitin is used as an adsorbent of the methylene blue dye. However, the process, which will be discussed later, is largely the same if chitin is to be used as a coagulant. Isotherm analysis was used to determine the effectiveness of chitin as an adsorbent. Extraction of chitin from shrimp shells: Grind dried, clean shrimp cells and submerged the particles in HCl for demineralization (1 solid volume to 14 solvent volume ratio) to remove calcium carbonate. Deproteinization was conducted with NaOH at 400 degrees Celsius with the same ratio. Finally, acetone is used to remove the color. Preparation of methylene blue dye: A solution of methylene blue dye is created using MB powder, de-ionized water, ethyl alcohol, and KOH solution. Experiment: Differing amount of chitin (0.1g to 0.6g) is mixed in with 250 mL of MB dye. Absorbance capacity is measured with the equation: $\frac{Quantity of dye adsorbed/unit mass = \frac{(Q-Q)Y}{M}}$ Adsorption of dye in relation to the amount of adsorbent present is calculated with the equation: $\frac{Log(Qe) = Log(Kf) + 1/nLog(Ce)}{M}$ log re-expression of fruenlich model for linearizing data pH effect on Methylene blue dye treatment: pH range of 4 to 9 with different			

Important Figures	Name: "Fig 3. Flow chart for methylene blue dye removal process."
Research Question/Problem/ Need	What are the optimal conditions for chitin to remove Methylene Blue dye through adsorption?
	concentration of dye as well (25mg/L to 250 mg/L) with 0.5 g of chitin. pH of 7 performed the best for removal efficiency. 0.5g of chitin and 25mg/L of MB dye results in the highest removal rate of 98%. pH away from 7 decreased the electrostatic force between the chitin and the dye causing the chitin to be unable to stick to the dye. This is confirmed through an alkaline medium. Chitin reaches maximum sorption capacity, so as concentration increases, the percentage of dye removed decreases. So, a concentration of 25mg/L and a pH of 7 is the best combination. Amount of chitin to removal of MB dye at 7pH, 25mg/L concentration, and at room temperature for 250mL dye solution: More chitin correlates to a better removal efficiency until the trend levels out as seen from 0.5g to 0.6g. So, the best amount of chitin is 0.5g. With similar condition except the amount of chitin is kept constant at 0.5g, but the time for the treatment ranges from 30-150 minutes: As time increases, the removal efficiency increases until 90 minutes to 150 minutes where the trend levels out. Therefore, the most effective time is 90 minutes. Adsorption dye with constant conditions and 2g of chitin: As the amount of methylene dye increases and the sorption is not at maximum capacity, the amount of methylene dye removed increases logarithmically. Due to the results agreeing with the Freundlich model for adsorption, chitin is established as a good adsorbent for methylene blue dye.

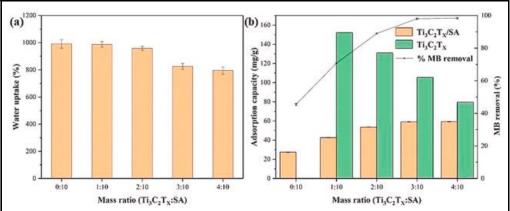



	chemical bonds using chemicals to depolymerize the biopolymer. Demineralization: Demineralization is the process of removing calcium, magnesium, and inorganic phosphate ions from a material, resulting in a less compact and less viscous substance. Equilibrium Concentration: The partition coefficient is defined as the ratio of the equilibrium concentrations of a dissolved substance in a two-phase system consisting of two largely immiscible solvents. Alkaline medium: An electroreforming process is the electrochemical generation of hydrogen by reducing proton concentrations in acidic media or reducing water concentrations in alkaline media at the cathode of an electrolysis cell and oxidising oxygenated organic molecules from biomass at the anode.
Cited references to follow up on	Ferreira, A. M., Coutinho, J. A. P., Fernandes, A. M., & Freire, M. G. (2014). Complete removal of textile dyes from aqueous media using ionic-liquid- based aqueous two-phase systems. <i>Separation and Purification Technology</i> , <i>128</i> , 58–66. <u>https://doi.org/10.1016/j.seppur.2014.02.036</u>
Follow up Questions	How would these results change if chitin is subjected to a mixture of dyes other than Methylene blue? How could chitin be extracted from fungi? How does temperature affect the treatment process?

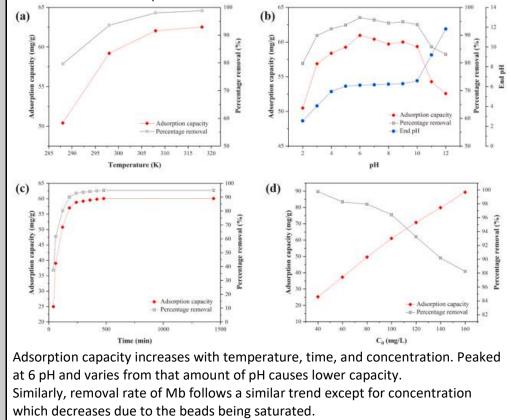
Article #14 Notes: Methylene Blue biodecolorization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentonite matrix

Source Title	Methylene Blue biodecolorization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentonite matrix
Source citation (APA Format)	Nabilah, B., Purnomo, A. S., Prasetyoko, D., & Rohmah, A. A. (2023). Methylene Blue biodecolorization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentonite matrix. <i>Arabian Journal of Chemistry</i> , <i>16</i> (8), 104940. <u>https://doi.org/10.1016/j.arabjc.2023.104940</u>
Original URL	https://www.sciencedirect.com/science/article/pii/S1878535223004021
Source type	Journal Article

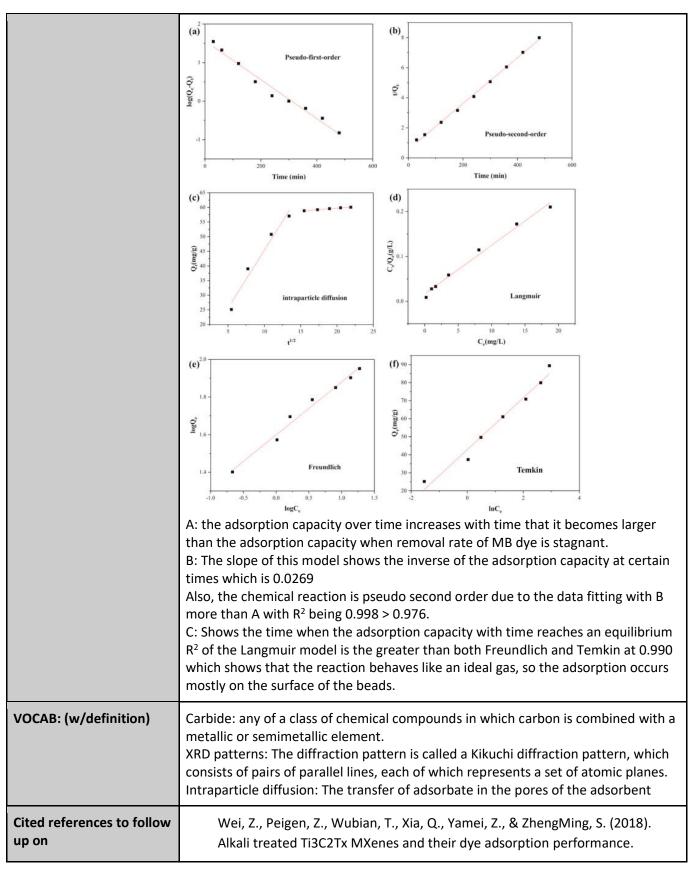
Keywords	Methylene Blue, Biodecolorization, <i>Ralstonia pickettii, Trichoderma viride,</i> Immobilization, Pollution
#Tags	
Summary of key points + notes (include methodology)	Introduction: Fungi can be more resistant to the dye than bacteria. The fungus present in this study (<i>richoderma viride</i>) was shown to be able to degrade heavy metal, polylactic acid, and MB dye as well. The bacteria <i>Ralstonia pickettii</i> was also shown to be able to degrade aromatic compounds. Furthermore, the bacteria have shown symbiotic relationship with other fungi to degrade other inorganic substances. The technique used in this research is called cell immobilization as the free cell method lacking in reusability and stability. Cells are trapped in beads made with sodium alginate, Polyvinyl Alcohol, and bentonite. Methods: Culture: The bacteria were incubated in nutrient agar at 37 C for a day, then incubated in a shaker for 2 days. The fungi were incubated in Potato dextrose agar for 7 days at 30 C. Then the fungi are mixed in 25 ml of demineralized water. 1ml of this mixture is put into potato dextrose broth. This mixture is incubated for 7 days at 30 C. Immobilization process: Create the matrix using 1 sodium alginate, 4 Polyvinyl Alcohol, and 1 bentonite (the ratio is of weight percentage of the whole / volume of the whole). The immobilized microorganisms are added to the matrix, and the mixture is put into a 0.4M CaCl2 and mixed. The resulting beads are added to CaCl2 solution for 24h, and then they are cleaned with sterile, pure water. Degradation of MB dye: 40g of beads were added to 50 mg/L concentration of 100mL in volume solution. The solution is then incubated at 35 degrees for 48h. The result is measured using spectroscopy. The bentonite used to create the beads increase the sorption capability of the beads by creating pores to increase the surface area. The result of biodegradation created azure A compounds which degrade to Azure C which is degraded into Thionine. These metabolites are adsorbed to the bentonite after degradation.
Research Question/Problem/ Need	What is the effectiveness of immobilized bacteria and fungi in treating Methylene Blue dye?
Important Figures	Name: "Fig. 1. Morphological structure of a) cross-section SA-PVA-B beads and b) immobilized mixed culture before decolorization c) immobilized mixed culture after decolorization."



Article #15 Notes: MXene/sodium alginate gel beads for adsorption of methylene blue

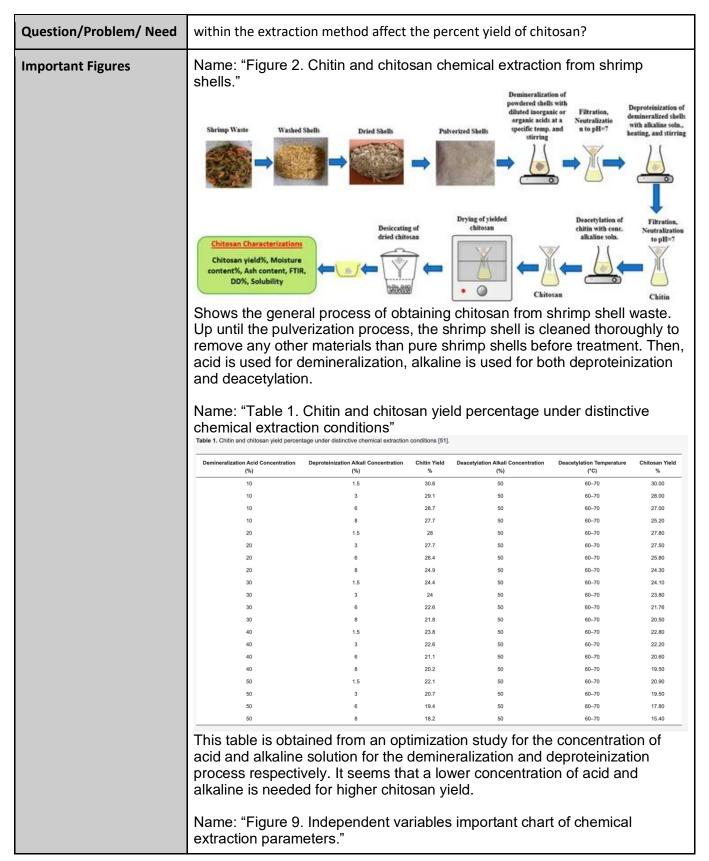

Source Title	MXene/sodium alginate gel beads for adsorption of methylene blue		
Source citation (APA Format)	Zhang, ZH., Xu, JY., & Yang, XL. (2021). MXene/sodium alginate gel beads for adsorption of methylene blue. <i>Materials Chemistry and Physics, 260,</i> 124123. <u>https://doi.org/10.1016/j.matchemphys.2020.124123</u>		
Original URL	https://www.sciencedirect.com/science/article/pii/S0254058420314838		
Source type	Journal Article		
Keywords	Ti ₃ C ₂ T _x , Sodium alginate, Ionic crosslinking, Methylene blue, Adsorption		
#Tags	Experiment: "MB adsorption batch experiments", Create beads: "Preparation of Ti3C2TX/SA beads"		
Summary of key points + notes (include methodology)	Introduction: MXene: A 2D matrix made with transitional metal carbides, nitrides, and carbonitrides. Its chemical formula is Ti ₃ C ₂ T _x ; T _x is the groups of chemicals attached to the exterior of the chemical structure that are O, OH, F. The material is biocompatible and has a large surface area. However, its hydrophilicity property poses a problem for separating it with water. Hence, polymer sodium alginate is used to form hydrogels that are easily removed from water. This helps preserve the graphene adsorbent. SA is used to adsorped MB dye in previous studies, and it adsorbed 414 mg of MB dye/g. Methods: Add the Ti ₃ C ₂ T _x into a solution of sodium alginate and distilled water. The solution was stirred for 6h to obtain the gel which is then placed in CaCl ₂ solution for 24 hours to create the beads. Then, they are freeze-dried after being washed thoroughly. Experiment: Testing 4 separate variables that may affect adsorption: ratio of graphene and SA, pH, temperature, and concentration of MB. 50 beads into 50mL of solution containing MB dye. The solution was oscillated at 130 rpm for 24h at 25 C. Test for recyclability: After the adsorption test, the beads are rinsed, put into acidic ethanol solution with 0.1 M HCl and 80% of ethanol. Shake them continuously for 6h and 35 C. Result: SA increases the surface area of the graphene which increases sorption. Mass ratio: As the graphene amount increases the adsorption of MB dye increases. The removal rate of MB dye increases to a maximum of 98.04% as tested in the		

	experiment with the ratio of 4 (Graphene) :10 (SA). However, the change is extremely minimal so a ratio of 3:10 is chosen to not waste materials. Temperature: Adsorption increases dramatically with temperature up until 35 C. After that, the change is much more gradual and slighter. This shows that the beads are resistant to high temperatures. pH: 6pH is optimal as this is when the beads have the highest adsorption rate. This is because the MB dye is cationic, the SA beads are anionic, so a mild alkaline condition works best. Time: Increases drastically during the first 4h. The removal rate becomes much more gradual after this time and reaches an equilibrium after 8h. Reusability: The effectiveness decreases from 98.04% to 81.36% after 3 trials which demonstrates that the material is reusable to a certain extent.			
Research Question/Problem/ Need	Can sodium alginate improve the adsorption capabilities of $Ti_3C_2T_x?$			
Important Figures	Name: "Fig. 2. SEM image of SA beads (a, b) and Ti3C2Tx/SA-30% beads (c, d)."(a)(b)(a)(b)(b)(c)<			



As the graphene amount increases the adsorption of MB dye increases. However, the result seems to look like a logarithmic function and levels of after 3:10 ratio. Water uptake decreases to adsorb more dyes.

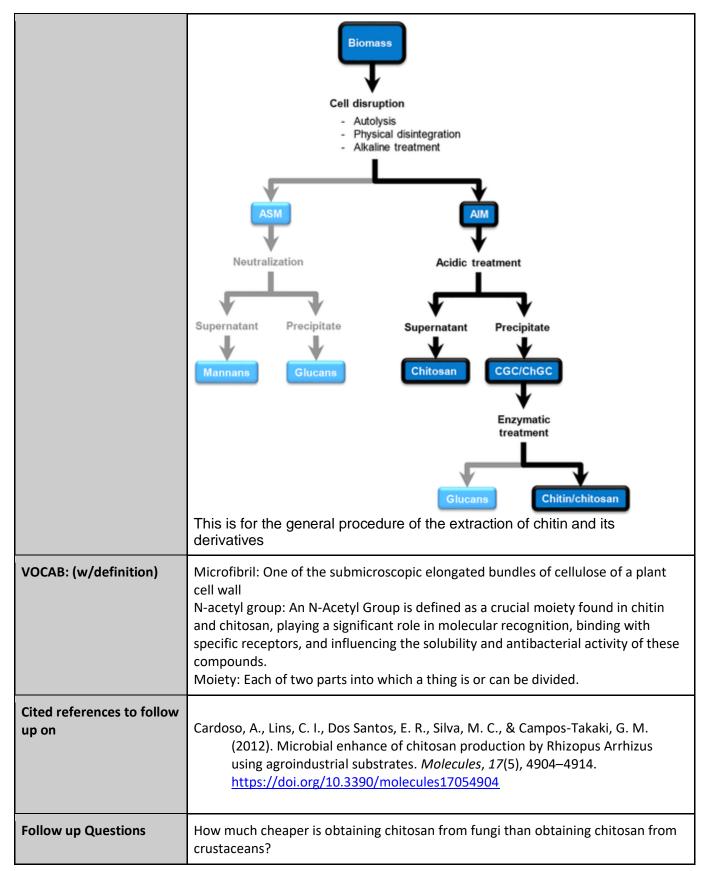
Name: "Fig. 5. (a) Effect of temperature on MB adsorption; (b) Effect of pH on MB adsorption; (c) Effect of contact time on MB adsorption; (d) Effect of initial MB concentration on adsorption."


Name: "Fig. 7. (a) Pseudo-first-order model for MB adsorption; (b) Pseudo-secondorder model for MB adsorption; (c) Intraparticle diffusion model for MB adsorption; (d) Langmuir model for MB adsorption; (e) Freundlich model for MB adsorption; (f) Temkin model for MB adsorption."

	Materials Chemistry and Physics, 206, 270–276. https://doi.org/10.1016/j.matchemphys.2017.12.034
Follow up Questions	How would other materials be used with graphene affect adsorption? Can immobilized fungi be incorporated into these beads to provide biodegradation? How does the mixing rate affect adsorption?

Article #16 Notes: A Review of the Chemical Extraction of Chitosan from Shrimp Wastes and Prediction of Factors Affecting Chitosan Yield by Using an Artificial Neural Network

Source Title	A Review of the Chemical Extraction of Chitosan from Shrimp Wastes and Prediction of Factors Affecting Chitosan Yield by Using an Artificial Neural Network
Source citation (APA Format)	Hosney, A., Ullah, S., & Barčauskaitė, K. (2022). A review of the chemical extraction of chitosan from shrimp wastes and prediction of factors affecting chitosan yield by using an artificial neural network. <i>Marine Drugs, 20</i> (11), 675. <u>https://doi.org/10.3390/md20110675</u>
Original URL	https://www.mdpi.com/1660-3397/20/11/675
Source type	Journal Article
Keywords	shrimp shells, chitosan, chemical extraction, neural networks
#Tags	"The impact of the independent parameters" (for the influence of different variables in the during extraction); "2.1. Chemical Demineralization of Shrimp Shells" (for the processes within the extraction method); "2.5.1. Moisture Content Determination" (for ways to determine chitosan's quality and the effectiveness of each method).
Summary of key points + notes (include	This is a review article, so its methodology is compiling research from many other articles. Furthermore, neural network is employed to comprise many research


			Normaliz	zed Importar	nce	
	0%	20%	40%	60%	80%	100%
	DeacetylationAlkaliConc					
	dmAcidConc					
	dpAlkaliConc					-
	dmTime					
	DATime					
	dpTime					
	dpTemp			_		
	DeacetylationTemp					
	0.00	0.	05 Im	0.1	D	0.15
	Importance					
	The result of the neural netw deproteinization.	ork. Dm i	s demir	neralizatio	on, and o	dp is
VOCAB: (w/definition)	Neural Network Modeling: A machine learning program, or model, that makes decisions in a manner similar to the human brain, by using processes that mimic the way biological neurons work together to identify phenomena, weigh options and arrive at conclusions. Multilayer Perceptron: a type of artificial neural network that consists of multiple layers of neurons, or nodes, arranged in a hierarchical structure.					
***Cited references to follow up on	Aitboulahsen, M., Chairi, H., Laglaoui, A., Arakrak, A., Zantar, S., Bakkali, M., & Hassani, M. (2018). Optimization and characterization of gelatin and chitosan extracted from fish and shrimp waste. <i>E3S Web Conf.</i> , <i>37</i> , 02006. <u>https://doi.org/10.1051/e3sconf/20183702006</u>					
Follow up Questions	Is this also true with chitosan obtained from yeast? Can the quality of chitosan be raised after the extraction? What is the total cost of the extraction?					

Article #17 Notes: Chitinous polymers: extraction from fungal sources, characterization and processing towards value-added applications

Source Title	Chitinous polymers: extraction from fungal sources, characterization and processing towards value-added applications
Source citation (APA	

Format)	Araújo, D., Ferreira, I. C., Torres, C. A., Neves, L., & Freitas, F. (2020). Chitinous polymers: Extraction from fungal sources, characterization and processing towards value-added applications. <i>Journal of Chemical</i> <i>Technology & Biotechnology</i> , <i>95</i> (5), 1277–1289. <u>https://doi.org/10.1002/jctb.6325</u>
Original URL	https://scijournals.onlinelibrary.wiley.com/doi/10.1002/jctb.6325
Source type	Journal Article
Keywords	Chitosan, fungi, extraction, polymer
#Tags	EXTRACTION OF POLYMERS FROM THE FUNGAL CELL-WALL, "Several procedures have also been used" (for methods to purify chitosan), "the most commonly used being infrared (IR) spectroscopy" (method for evaluating chitosan purity)
Summary of key points + notes (include methodology)	This is a review article that combines many articles that contribute to understanding the extraction of chitin from fungi. Chitosan obtained from crustaceans are not consistent as different animals have different amounts of chitosan. However, the amount of chitin in fungal cells is more consistent, so the extraction from fungal cells is more reliable. Chitin is found in the fungi's cell wall where the chemical makes a fiber-like structure. The methods discussed in this article can also be applied to fungal biomass waste. General procedure for extraction: It starts with disrupting the cell wall by subjecting the cell to an alkaline solution that will dissolve many of the cell wall's components except chitin. Then, use an acid solution to generate a pH of 4.0 to dissolve the chitosan, as the other materials within the fungi are insoluble, so they can be later separated through centrifugation. After that, the chitosan is extracted from the solution through a precipitation after subjecting the deproteinization and demineralization process, such as subjecting the chitosan to potassium permanganate. Determine the quality of then chitosan through spectroscopy analysis where the chitosan is mixed with Potassium Bromide. The formula to obtain the percentage of the acetyl group to show the effectiveness of the deacetylation process: (1655 cm^-1 / 3450cm^-1) * 115 , the higher the value the better. Chitosan has a lot of uses besides wastewater treatment such as providing medicinal values and other biological uses.
Research Question/Problem/ Need	What is the process of extracting chitosan from fungi?
Important Figures	Name: "Table 1. Chitinous polymer production by different organisms using different cultivation modes and substrates"

Product	Organism	Cultivation mode	Substrate	Production yield (%)	Reference
Chitosan	Gongronella	Submerged	Sweet potato	12.7	25
	butleri	Solid state		9.2	
Chitosan	Rhizopus arrhizus	NA	Corn steep liquor and honey	3.0	26
Chitosan	Rhizopus arrhizus	NA	Molasses and corn	4.9	10
Chitosan	Cunninghamella elegans	NA	steep liquor	3.3	
Chitin	Rhizopus arrhizus	NA		8.3	
Chitin	Cunninghamella elegans	NA		7.2	
Chitin	Cunninghamella elegans	NA	Glucose	24	27
Chitin	Cunninghamella elegans	Submerged	Yam bean	6.6	28
Chitin	Aspergillus terreus	Submerged	Glucose	34	21
Chitosan				4.8	
CGC	Schizophyllum commune	Submerged	Sucrose	15.2–30.2	12
CGC	Komagataella pastoris	Fed-batch mode	Crude glycerol	18–26	16
CGC	Komagataella	Fed-batch	Glucose	16	29
	pastoris	mode	Xylose	15	
			Glucose/xylose	18	
			od in extracting ch ining the expected		ld.
orocedur soluble n	res for recovery	of polymers ali-insoluble	ntation of cell-wal from fungal biom matter; CGC, chiti	ass (ASM, a	lkali-

How much purer are the chitosan after subjecting it to the decolorization method? How is yeast cultured?

Article #18 Notes: Two-phase extraction, characterization, and biological evaluation of chitin and chitosan from *Rhizopus oryzae*

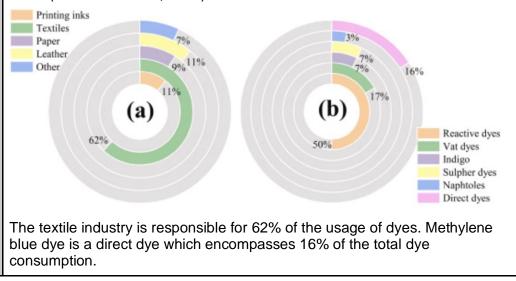
Source Title	Two-phase extraction, characterization, and biological evaluation of chitin and chitosan from <i>Rhizopus oryzae</i>
Source citation (APA Format)	Gachhi, D. B., & Hungund, B. S. (2018). Two-phase extraction, characterization, and biological evaluation of chitin and chitosan from Rhizopus oryzae. <i>Journal of Applied Pharmaceutical Science</i> , 8(11), 116–122. <u>https://doi.org/10.7324/japs.2018.81117</u>
Original URL	https://japsonline.com/admin/php/uploads/2771_pdf.pdf
Source type	Journal Article
Keywords	Chitin, chitosan, FTIR, XRD, anti-bacterial activity, antioxidant activity.
#Tags	"Materials and Methods," "Material characterization"
Summary of key points + notes (include methodology)	Chitosan is soluble in organic acid such as citric acid, but its solubility in inorganic acid such as HCl is limited. Because a large amount of potent alkaline is needed to obtain chitosan from crustaceans, there is a need for an alternative method to obtain chitosan. Obtaining chitosan from fungi is a potential solution because instead of using alkaline solution, chitosan can be produced from fungi through fermentation. Chitosan has many medicinal values, is used in agriculture, wastewater treatment, and other prominent industries. The method in this article only employed sulphuric acid. Methodology: Fungal culture: The fungi is grown in a dextrose agar, incubated for 5 days at room temperature, and is chilled at 4 C. Two phase extraction: The fungi is filtered and dried. Then, dealkylation was carried out using 1N NaOH. After that, deacetylation was conducted using 1% sulphuric acid at a high temperature. Then, it was subjected to the alkaline treatment again, and is homogenized and autoclaved at 121 C. Then, centrifuge at 6000 rpm. The liquid was obtained and cooled. Then, subject the liquid to centrifugation again to obtain the chitosan. The chitosan's degree of deacetylation. The degree of deacetylation was determined through the use of spectroscopy to find the ratio of absorbance of wavelength 1655 cm^-1 and

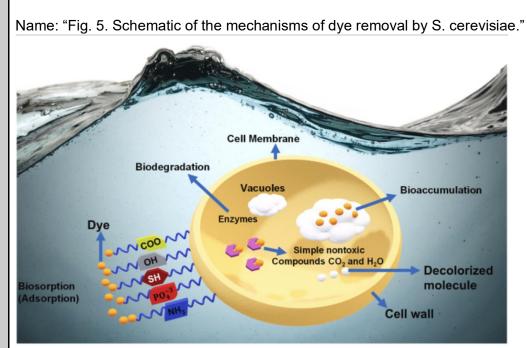
Research Question/Problem/ Need	Results: This meth leave pho 72.51% d respectat chitosan chemical How effe obtaining	th 3450cm^-1. nod performed better th osphate impurities which eacetylated which is abo ole amount for the simp obtained was doubled for from fungi. ctive is the two-phase es chitosan? Table 1. Degree of dea	n the H2SO4 will r out 16% less than licity of this meth rom the original n xtraction method	not. The chitosa standard chitos od. Furthermor nethod for obta developed in th	n obtained was san but is still a e, the amount of ining the nis article at
Important Figures		d chitosan from Rhizo			
	Sl. No	Sample	Degree of deacetylation (%)	Molecular weight (Da)	Viscosity (cP)
	1	Standard chitin	23.84	4.32 × 10 ⁵	4.90
	2	Standard chitosan	88.08	2.12×10^{5}	1.68
	3	Chitin from Rhizopus oryzae	10.24	$2.7 imes 10^6$	5.63
	4	Chitosan from <i>Rhizopus oryzae</i> re shows the effective	72.51	3.5 × 10 ⁵	3.08
			2000 2500 3	000 3500	a b 4000
	This grai	w oh shows that chitosa	ave number [cm ⁻¹	-	t is comparable
	to standa	ard chitosan. However y worse because less	, the chitosan ol	btained from th	ne experiment
VOCAB: (w/definition)	Sabourau	d's dextrose medium: A	type of agar grov	wth medium cor	ntaining

	peptones. It is used to cultivate dermatophytes and other types of fungi.
Cited references to follow up on	Alagesan, M., Panneerselvam, A., & Rathinam, K. M. S. (2016). Extraction, Optimization and Characterization of Chitosan from Penicillium chrysogenum. <i>International Journal of Current Microbiology and Applied</i> <i>Sciences</i> , 19-26. <u>https://api.semanticscholar.org/CorpusID:212447092</u>
Follow up Questions	How well does this method work on baker's yeast? How to improve the quality of chitosan using this method? Could hot sulphuric acid be used for extracting chitosan from crustaceans as well?

Article #19 Notes: New insights on the decolorization of waste flows by *Saccharomyces cerevisiae* strain – A systematic review

Source Title	New insights on the decolorization of waste flows by <i>Saccharomyces cerevisiae</i> strain – A systematic review
Source citation (APA Format)	Ghodsi, S., Kamranifar, M., Fatehizadeh, A., Taheri, E., Bina, B., Hublikar, L. V., Ganachari, S. V., Nadagouda, M., & Aminabhavi, T. M. (2024). New insights on the decolorization of waste flows by Saccharomyces cerevisiae strain – A systematic review. <i>Environmental Research</i> , <i>249</i> , 118398. <u>https://doi.org/10.1016/j.envres.2024.118398</u>
Original URL	https://www.sciencedirect.com/science/article/pii/S0013935124003025?via%3Dihub
Source type	Journal Article
Keywords	Baker's yeast, Textile wastewater, Dyes and color, Saccharomyces cerevisiae
#Tags	"Yeast immobilization," "3.1.3. Biodegradation,"
Summary of key points + notes (include methodology)	Introduction: Millions of tons of dyes pollute human's water sources each day. Hence, the caliber of pollution due to dyes within wastewater is tremendous. Synthetic dye is more popular than natural dye due to them being cheaper. Furthermore, methylene blue dye, which is an ionic dye, is dangerous because of its reactivity and other health concerns, such as acting as a catalyst for cancer.


	Methods of decolorization: Advanced oxidation process, photocatalytic degradation, electrocatalytic degradation, coagulation/flocculation, Fenton oxidation method, filtration, and adsorption. Most of these methods are expensive and require a lot of energy, but adsorption, leading to coagulation and flocculation is cheap. Methods: Review past particles and compile their results. Removal rate declines as dye concentration increases. As the amount of yeast increases, the efficiency of the reaction increases. Optimal pH varies with the type of dye used, but for Methylene blue dye, the optimal pH is mostly close to 7pH. Methods for the yeast to remove dye: Biosorption : Yeast biomass adheres to the dye and extracts it from the wastewater. This is because the yeast cell walls have functional groups that allow it to bind with the pollutant in the effluent. At high pH, the cell wall becomes negatively charged which helps with adsorption of cationic dyes, in this case is Methylene Blue. More yeast would increase the number of active sites for biodegradation and adsorption, leading to a higher removal rate of dyes. For Methylene blue dye, the temperature of the environment should not be above 35 C to decrease the efficiency of its removal. Bioaccumulation in yeast happens when Carbon and Nitrogen is provided, so the dye accumulates within the cell as it longer needs to degrade the dye into those materials. This method requires a constant supply of those two elements, making it more expensive. Biodegradation : The yeast adapts to the dye and degrades it into simple nontoxic chemicals. Biodegradation by yeast may be slow, but it is effective. The pH affects the growth of the fungi, so maintaining a pH of 4-5 is preferable for biodegradation. Immobilization of yeast cells : By adsorption: Immobilize the cell using electrostatic force for the yeast to be attracted to Fe3O4 By contact to surface: Less chance to lose cells than the previous method. Covalent bond between the carrier used to immobilize the yeast's ability o
Research Question/Problem/ Need	How effective is ye
Important Figures	Name: "Comparison of the affecting parameters on biosorption process by S. cerevisiae during dye removal."


Dao 68

Sorbent type	Modification method	Pollutant	Conditions	Removal efficiency (%) or sorption capacity (mg/g)	Ref
ZnFe ₂ O ₄ nanoparticle functionalized baker's yeast, Pure yeast	Functionalized, Pre- treat	Methylene blue (MB)	Yeast dose: 2.5 g/L, dye concentration: 100 mg/L, pH: 7, time: 90 min.	Sips = 108.3 mg/g (composite), Sips = 70.5 (pure	Zhang and Zhang (2020)
S. cerevisiae	Pre-treat	C. I. Reactive Red 2	Yeast dose:1.25 g/L, pH: 2,	yeast) 500 mg∕g	Zhang and
baker's yeast modified with Peat	Immobilization via adsorption, Pre-	Crystal violet	temperature: 30 °C, time: 90 min. Yeast dose: 0.2 g/L, dye concentration: 100 mg/L, pH: 10,	$\begin{array}{l} Sips = 17.9 \mbox{ mg/g}, \\ Langmuir = 15.1 \end{array}$	Wang (2013) Zehra et al. (2016)
Poly (methacrylic acid) modified baker's yeast	treat Functionalized	MB, Rhodamine B (RB), Basic magenta (BM)	time: 150 min. Yeast dose: 0.05 g/L, dye concentration: 1 × 10 ⁻³ mol/L, pH: 6.5, time: 70 min, temperature: 35 °C	mg/g MB, RB, and BM were 869.6, 267.4, and 719.4 mg/g	Yu et al. (2009)
S. cerevisiae	-	Remazol Orange RR	Yeast dose: 2 g/L, dye concentration: 200 mg/L, pH: 3, temperature: 25 °C.	84.9%	Ulas and Ergun (2019)
baker's yeast modified by nano- ${\rm Fe_3O_4}$	Functionalized, Pre- treat	Methyl violet	Yeast dose: 0.5 g/L, pH: 6, dye concentration: 300 mg/L, time: 30 min, temperature: 25 °C.	60.8 mg/g	Tian et al. (2010)
S. cerevisiae immobilized on calcium alginate	Immobilization via encapsulation	Methylene green (MG)	Yeast dose: 0.25 g/L, dye concentration: 140 mg/L, pH: 5, temperature: 35 °C, time: 240 h.	17 mg/g	Godbole and Sawant (2006)
xanthate-modified baker's yeast	Functionalized	MB	Yeast dose: 0.2 g/L, dye concentration: 100 mg/L, pH: 7, temperature: 35 °C.	64.5 mg/g	Song et al. (2019)
Baker's yeast modified MnO ₂ composites.	Functionalized	MG	Yeast dose: 1 g/L, dye concentration: 100 mg/L, pH: 10, temperature: 25 °C, time: 120 min.	Sorption capacity: 86.7 mg/g, Langmuir = 243.9 mg/g	Santos et al. (2019)
S. cerevisiae immobilized calcium alginate (SC-A-5%), S. cerevisiae immobilized chitosan (SC-C- 2,5%)	Immobilization via encapsulation	Orange II, Indigo Carmine	Yeast dose: 1 g/L, OII concentration: 30 mg/L, IC concentration: 50 mg/L, pH: 5	27.8% and 58.3% (alginate), 17.2% and	Rusu et al. (2021)
Yeast (S. cerevisiae) extract capped on the surface of Ag nanoparticles	-	MB	Yeast dose: 0.2 g/L, dye concentration: 10 mg/L, time: 6 h	80%	Roy et al. (2015)
S. cerevisiae	-	Alizarin Red S	Yeast dose: 0.4 g/L, dye concentration: 75 mg/L, pH: 3, time: 120 min	69%	Ramavandi et al. (2019)
S. cerevisiae	-	m-[(4-dimethylamino) phenylazo] benzenesulfonic acid, methyl orange	Yeast extract (0.25%, wt/vol), glucose (2%, wt/vol), and 0.2 mmol/L of the tested dye	-	Ramalho et al. (2005)
S. cerevisiae	-	Reactive Red 120	Yeast dose: 8.25 g/L, dye concentration: 16.25 mg/L, pH: 4.75, time: 52.5 min.	99.9%	Navaeia et al. (2019)
S. cerevisiae immobilized on Luffa	-	Direct Red 23	Yeast dose: 100 mg/L, pH: 2.5, time: 240 h, temperature: 30 °C	49.42% (disks), 65.5% (powder)	Morão et al. (2017)
Chitosan Beads with Immobilized S. cerevisiae	-	Acid Blue 25 dye	Yeast dose: 50 g/L, dye concentration: 100 mg/L, pH: 2.5, time: 240 min.	28.2 mg/g	Mendes et al. (2021)
S. cerevisiae	-	Direct Orange 2 GL	Yeast dose: 0.5 g/L, dye concentration: 50 mg/L, pH: 4, time: 90 min	0.06 mg/g	Mendes et al. (2015)
S. cerevisiae	-	MB	Yeast dose:1.32 g/L, dye concentration: 14.37 mg/L, pH: 9.35, time: 50.81 min	99.16%	Mazloomi et al. (2021)
S. cerevisiae	-	Ramazole blue (Vinyl sulfone)	Yeast dose: 0.25 g/L, dye concentration: 100 mg/L, pH: 2, time: 60 min, temperature: 25 °C	100%	Mahmoud (2016)
S. cerevisiae	-	MG	Yeast dose: 1 g/L, dye concentration: 100 mg/L, pH: 6, time: 60 min, temperature: 30 °C	75.18%	Liu et al. (2019)
S. cerevisiae	-	C.I. Reactive Black 8, C.I. Reactive Brown 9, C.I.Reactive Green 19, C.I. Reactive Blue 38, and C.I. Reactive Blue 3	Yeast dose: 1 g/L, dye concentration: 50 mg/L, pH: 6, time: 15 min, temperature: 30 °C	71_91%	Kumari and Abraham (2007)
Diatomite modified yeast	Functionalized	MB	Yeast dose: 1 g/L, dye concentration: 1000 mg/L, time: 96 h, temperature: 25 °C	93.3 mg/g	Ma et al. (2019)
S. cerevisiae, Pretreatment S. cerevisiae	Pre-treat	MB	Yeast dose:10 g/L, dye concentration: 100 mg/L, pH: 5, time: 1440 min, temperature: 20 °C	Raw S. cerevisiae = 91%, Pretreated S. cerevisiae = 94%	Guler and Sarioglu (2014)

Sorbent type	Modification method	Pollutant	Conditions	Removal efficiency (%) or sorption capacity (mg/g)	Ref
S. cerevisiae	-	MB, brilliant green	Yeast dose: 0.3 g/L, dye concentration: 8 mg/L for each dye, time = 5 min, room temperature.	100%	Ghaedi et a (2013)
S. cerevisiae	-	Astrazone Blue basic	Yeast dose: 4 g/mL, dye concentration: 200 mg/L, pH: 7, time: 120 min, temperature: 30 °C	70 mg/g	Farah et al. (2007)
S. cerevisiae	-	Levafix brilliant blue	Yeast dose 105 g/L, dye concentration: 250 mg/L, pH: 3, time: 10–15 min, temperature: 30 °C	172 mg/g	Erkurt and Olaifa (202
S. cerevisiae Immobilized Pumice Stone		Remazol Yellow	Yeast dose: 2.5 g/L, dye concentration: 400 mg/L, pH: 3, time: 450 min, temperature: 25 °C	99% and 140 mg/g	Erdem and Ergun (202)
S. cerevisiae	-	Yellow 2 (BY2), Basic Green 4 (BG4)	Yeast dose: 1 g/L, dye concentration: 40 mg/L, pH: 5, time: 240 min, temperature: 30 °C	96% (BG4), 93% (BY2)	Kelewou et (2014)
S. cerevisiae	-	Acid Blue 161	Yeast dose: 2.5 g/L, dye concentration: 100 mg/L, pH: 2.5, time: 180 min, temperature: 20 °C	Sorption capacity: 1.25 mg/g and Langmuir: 0.86 mg/	Dilarri et al. (2016)
Immobilization of S. cerevisiae by contact (ICC), Encapsulation of S. cerevisiae matrix (ECM) in cross-linked chitosan beads,	Immobilization via contact to surface	Direct Orange 2 GL	Yeast dose: 2.5 g/L, dye concentration: 100 mg/L, pH: 2.5, time: 300 min, temperature: 40 °C	34.7 mg/g (pure yeast), 35.2 mg/g (ECM), 31.7 mg/g (ICC)	Dilarri and Corso (2018
S. cerevisiae	-	Acid Orange 7, Direct violet 51	Yeast dose: 4 mL of 30% S.M in 10 mL of dye, dye concentration: 3700 mg/L, time: 312 h, temperature: 30 °C	84%	Almeida et a (2018)
S. cerevisiae immobilized on Fe ₃ O4 magnetic nanoparticles	Functionalized	Methyl orange	Yeast dose: 1.5 g/L, dye concentration: 50 mg/L, pH: 6.5, time: 140 min, temperature: 35 °C	96.5%	Azeez and Al-Zuhairi (2022)
S. cerevisiae	-	Methyl Green	Yeast dose: 0.075 g/L, dye concentration: 50 mg/L, pH: 7, time: 80 min, temperature: 40 °C	20.1 mg/g	Al-Tameemi et al. (2022)
S. cerevisiae	-	Remazol Blue reactive	Yeast dose: 1 g/L, dye concentration: 91 mg/L, pH: 2, time: 80 min, temperature: 25 °C	89 mg/g	Aksu and Dönmez (200
Baker's yeast and mix with nano- polyaniline	-	Acid Red 14	Yeast dose: 0.1 g/L, dye concentration: 500 mg/L, pH: 4, time: 60 min, temperature: 25 °C	86%(mix), 63% (alone)	Ahmed et al. (2016)
S. cerevisiae	-	Eosin Y, Eosin B	Yeast dose: 2 g/L for Y and 0.1 g/L for B, dye concentration: 200 mg/L, pH: 4 for Y and 2 for B, time: 180 min, temperature: 45 °C	1000 mg/g for B and	Bahramifar et al. (2015)
S. cerevisiae	-	Methyl orange	Yeast dose: 5 g/L, dye concentration: 50 mg/L, pH: 5, time: 48 h	dry (90.7%), wet (94.5%)	El-Sayed et a (2018)
S. cerevisiae	-	Acid Red 14	Yeast dose: 0.4 g/L, dye concentration: 520 mg/L, pH: 3, time: h, temperature: 45 °C		Farah and El-Gendy (2013)
S. cerevisiae	-	M-Anisidine	Yeast dose: 2 g/L, dye concentration: 50 mg/L, time: 100 min, temperature: 30 °C	88.8%	Asiagwu (2019)
S. cerevisiae	-	Remazol Blue, Remazol Black B, Remazol Red RB	dye concentration: 10.8 mg/L (Blue), 13.3 mg/L (Black), 46.7 mg/L (Red RB), pH: 3, time: h, temperature: 25 °C	88.5 mg/g (Black B), 84.6 mg/g (Blue), 48.8 mg/g (Red RB)	Aksu (2003)
S. cerevisiae	Pre-treat	MB	Acid concentration: 2 N, biosorbent dose: 10 g/L, time: 48 h	117.4 mg/g (treated), 45.7 mg/g (untreated)	Pratibha et al (2010)
S. cerevisiae	-	Brilliant Red HE-3B	Yeast dose: 4 g/L, dye concentration: 50 mg/L, pH: 2.3, temperature: 20 °C	104.2 mg/g	Suteu et al. (2013)
S. cerevisiae immobilized on calcium alginate	Immobilization via entrapment	MG	Yeast dose: 0.49 g/L, dye concentration: 188 mg/L, pH: 6.8, time: 60 min, temperature: 20 °C	96.25%	Singh et al. (2012)

Name: "Fig. 1. (a) Industry with high dyes application (Bulk Chemicals Industry, 2023) and (b) worldwide consumption of dyes for dyeing of cellulose fibers (Božič and Kokol, 2008)."

The diagram shows how the yeast degrades dyes: the dye enters the cell and accumulates, so the enzyme degrades it into nontoxic molecules, which leaves the cell wall.

Name: "Table 4. Comparison of biodegradation of dyes by various S. cerevisiae-based biomass during the biodegradation process."

biomass type	Modification method	Pollutant type	Conditions	Removal efficiency (%)	Ref
S. cerevisiae (ATCC 9763) immobilized in calcium alginate	Immobilization via encapsulation	Methyl red	Dye concentration: 100 mg/L, time: 6 h, temperature: 30 $^\circ\mathrm{C}$	100%	Vatandoostarani et al. (2018)
S. cerevisiae immobilized on calcium alginate	Immobilization via entrapment	Acid Blue 161, Procion Red MX-5B	Dye concentration: 200 mg/L (100 mg/L Acid Blue 161 + 100 mg/L Procion Red MX-5B), biomass suspension volume: 3 g/L	100%	de Almeida et al. (2019)
Immobilized S. cerevisiae with polyethyleneimine- treated sugarcane bagasse	-	Acid Black 48	Yeast dose: 5 g/L, dye concentration: 100 mg/L, pH: 2.5, time: 216 h, temperature: 30 °C	26% (immobilized), 90% (free)	Mitter and Corso (2013)
S. cerevisiae	-	Carmoisine	Dye concentration: 50 mg/L, time: 7 h, temperature: 30 °C	100%	Kiayi et al. (2019)
S. cerevisiae	-	MG	Yeast dose: 2 g/L, dye concentration: 100 mg/L, time: 7 h (distilled water) and 4 h (glucose medium), temperature: 33 °C	85% (distilled water), 95.5% (5% glucose medium)	Jadhav and Govindwar (2006)
S. cerevisiae catalyzed by NZVI	Functionalized	Direct Blue 71	Yeast dose (presence of NZVI):1 g/L, dye concentration: 200 mg/L, pH: 6.5, time: 48 h (present catalyst) 72 h (absent catalyst), temperature: 28 °C	Absence of the catalyst: 96%, in the presence of 0.1% NZVI: 100%	Fetyan et al. (2016
S. cerevisiae	-	MB	Yeast dose: 0.2 g/L, dye concentration: 20 mg/L, pH: 3.5, time: 24 h, temperature: 30 °C	83.50%	Acosta Rendon (2020)
S. cerevisiae	-	Carmoisine, Reactive Black 5	biosorbent dose: 10 g/L, dye concentration: 25 (RB5) and 50 (C) mg/L, time: 24 h, temperature: 28 °C	85% (RB5), 53% (C)	Sadeghi et al. (2014)
S. cerevisiae	-	Methyl orange	Yeast dose: 5 g/L, dye concentration: 50 mg/L, pH: 5, time: 48 h	Dry (90.7%), wet (94.5%)	El-Sayed et al. (2018)
S. cerevisiae	-	m-[(4-dimethylamino) phenylazo] benzenesulfonic acid, methyl orange	yeast extract (0.25%, wt/vol), glucose (2%, wt/vol), and 0.2 mmol/L of the tested dye	-	Ramalho et al. (2005)
Secretion of Three Fungal Laccases from <i>S. cerevisiae</i>	-	Methyl red, saturn blue, coomassie brilliant blue G-250, bromophenol blue, remazol brilliant blue	pH: 4.6, time: 4 d, temperature: 25 $^\circ\mathrm{C}$	-	Antošová et al. (2018)
the consortium of Canna indica and S. cerevisiae		Congo red	Dye concentration: 100 mg/L, time: 72 h, temperature: 30 °C	73%	Jadhav et al. (2023)

Although immobilizing the yeast would result in more efficiency, the yeast themselves still removes a considerable percentage of dyes, so a cost analysis needed to be conducted to determine if immobilization is necessary.

			sotherm, a	and thermodynami	ic of dye adsorption by
	S. cerevisiae yea				
	Condition Immobilized S. <i>cerevisiae</i> by AnFe ₂ O ₄ (2.5 g/L), MB (100 mg/L), pH: 7, time: 90 min	Kinetic Pseudo-second order (PSO) (composite), Pseudo-first order (PFO)	Isotherm Freundlich (composite), Langmuir (pure yeast)	-	Ref Zhang and Zhang (2020)
	Pre-treated S. cerevisiae (1.25 g/L), C. I. Reactive Red 2, pH: 2, time: 90 min.	(pure yeast) -	Langmuir	$\Delta G{<}0, \Delta H{>}0, \Delta S{>}0$	Zhang and Wang (2013)
	Modified S. cerevisiae with peat (0.2 g/L), Crystal violet (100 mg/L), pH: 10, time: 150 min.	PSO	Sips	$\Delta G{<}0,\Delta H{>}0,\Delta S{>}0$	Zehra et al. (2016)
	Poly (methacrylic acid) modified baker's yeast (0.05 g/L), MB, RB, and BM (1 mM), pH: 6.5,	-	Langmuir	MB: Decrease in efficiency with temperature increasing, RB and BM: efficiency increasing with	Yu et al. (2009)
	time: 70 min S. cerevisiae (2 g/L), remazol orange RR (200 mg/	PSO	Langmuir	temperature increasing ΔG <0, ΔH >0, ΔS >0	Ulas and Ergun
	L), pH: 3 Modified S. cerevisiae by nano-Fe ₃ O ₄ (0.5 g/L),	PSO	Langmuir	$\Delta G < 0, \Delta H > 0, \Delta S > 0$	(2019) Tian et al.
	methyl violet (300 mg/L), pH: 6, time: 30 min S. cerevisiae immobilized on calcium alginate (0.25 g/L), MG (140 mg/L), pH: 5, time: 240 min	-	Freundlich	-	(2010) Godbole and Sawant (2006)
	Xanthate-modified S. cerevisiae (0.2 g/L), MB (100 mg/L), pH: 7	PSO	Langmuir	$\Delta G{<}0, \ \Delta H{>}0, \ \Delta S{>}0$	Song et al. (2019)
	Modified S. cerevisiae by MnO2 composites (1 g/ L), MG (100 mg/L), pH: 10, time: 120 min.	PSO	Langmuir	$\Delta G{<}0, \Delta H{>}0, \Delta S{>}0$	Santos et al. (2019)
	S. cerevisiae (0.4 g/L), Alizarin Red S (75 mg/L), pH: 3, time: 120 min	-	Alizarin Red S	Yeast dose: 0.4 g/L, dye concentration: 75 mg/L, pH: 3, time: 120 min	Ramavandi et al. (2019)
	S. cerevisiae (8.25 g/L), Reactive Red 120 (16.25	PSO	Langmuir		Navacia et al. (2019)
	mg/L), pH: 4.75, time: 52.5 min. S. cerevisiae immobilized on Luffa (100 mg/L), Dicott Red 22, pH: 2.5, time: 240 min.	-	Langmuir	-	Morão et al.
	Direct Red 23, pH: 2.5, time: 240 min Chitosan Beads with Immobilized S. cerevisiae (50 g/L), acid blue 25 (100 mg/L), pH: 2.5, time: 240 min.	PSO	Langmuir	ΔG >0, ΔH >0, ΔS >0	(2017) Mendes et al. (2021)
	S. cerevisiae (0.5 g/L), direct orange 2 GL (50 mg/ L), pH: 4, time: 90 min	-	Langmuir	-	Mendes et al. (2015)
	S. cerevisiae (0.25 g/L, ramazole blue (vinyl sulfone) (100 mg/L), pH: 2, time: 60 min	-	Freundlich	-	Mahmoud (2016)
	S. cerevisiae (1 g/L), pH: 2, time: 80 min S. cerevisiae (1 g/L) reactive dyes (50 mg/L), pH: 6, time: 15 min	-	Langmuir	Temperature: 20–40 °C, lowest efficiency at 20 °C and highest efficiency at 30 °C.	(2016) Kumari and Abraham
			Lanamuir	20 G and ingrest enriciency at 30 °C.	Abraham (2007) Ma et al. (2019)
	Diatomite modified yeast (1 g/L), MB (1000 mg/ L), time: 96 h	-	Langmuir	-	
	Pretreated S. cerevisiae (10 g/L), MB (100 mg/L), pH: 5, time: 1440 min S. cerevisiae (0.2 g (1) MB and brittleast group (8)	PSO	Langmuir Freundlich	R-MB: ΔG <0, ΔH <0, ΔS <0 and P-MB: ΔG <0, ΔH <0, ΔS >0	Guler and Sarioglu (2014) Ghaedi et al.
	S. cerevisiae (0.3 g/L), MB and brilliant green (8 mg/L, time = 5 min S. cerevisiae catalyzed by NZVI (1 g/L), direct blue 71 (200 mg/L), pH: 6.5, time: 48 h	PSO –	-	 Increasing decolorization activity with incubation temperature increasing (25–37 °C). 	Ghaedi et al. (2013) Fetyan et al. (2016)
	S. cerevisiae (4 g/L), astrazone blue (200 mg/L), pH: 7, time: 120 min	-	Langmuir	Highest activity at 28 °C (100%) Endothermic system. Sorption of astrazone blue improved with increasing temperature from	(2016) Farah et al. (2007)
	S. cerevisiae (0.05 g/L), levafix brilliant blue (250 mg/L), pH: 3, time: 10–15 min	PSO	Langmuir	20 °C to 50 °C ΔG<0, ΔH<0, ΔS>0	Erkurt and Olaifa (2021)
	S. cerevisiae (1 g/L), BY2 and BG4 (40 mg/L), pH: 5, time: 240 min	PFO	-	-	Kelewou et al. (2014)
	S. cerevisiae (2.5 g/L), acid blue 161 (100 mg/L), pH: 2.5, time: 180 min	PSO	Langmuir	$\Delta G{>}0, \ \Delta H{>}0, \ \Delta S{>}0$	Dilarri et al. (2016)
	pr. 2.0, tuin: 100 nm d S. cerevisiae by contact, encapsulation of S. cerevisiae matrix in cross- linked chitosan beads, immobilization via contact to surface (2.5 g/L), direct orange 2 GL (100 mg/L), pH: 2.5, time: 300 min	PSO	 cerevisiae biomass: Langmuir, all cross- linked chitosan beads: Freundlich 	S. cerevisiae biomass: $\Delta G < 0$, $\Delta H > 0$, $\Delta S > 0$, Cross- linked chitosan beads: $\Delta G > 0$ at $10 - 30$ °C and $\Delta G < 0$ at 50 °C, $\Delta H > 0$ and $\Delta S > 0$ for all temperature; Cross-linked chitosan beads $\Delta G > 0$ at $10 - 30$ °C and $\Delta G < 0$ at 50 °C, $\Delta H > 0$ and $\Delta S > 0$ for all temperature; Cross-linked chitosan beads: $\Delta G > 0$ at $10 - 20$ °C and $\Delta G < 0$ at $30 - 50$ °C, $\Delta H > 0$ and $\Delta S > 0$ for all temperature	Dilarri and Como (2018)
	S. cerevisiae immobilized on Fe ₃ O ₄ (1.5 g/L), methyl orange (50 mg/L), pH: 6.5, time: 140	-	Freundlich	$\Delta G < 0, \Delta H < 0, \Delta S > 0$	Azeez and Al-Zuhairi
	min S. cerevisiae (0.075 g/L), methyl green (50 mg/L),	PSO	Langmuir	$\Delta G < 0, \Delta H > 0, \Delta S > 0$	(2022) Al-Tameemi
	pH: 7, time: 80 min S. cerevisiae (1 g/L), remazol blue reactive (91	PSO	Langmuir	_	et al. (2022) Aksu and
	mg/L), pH: 2, time: 80 min S. cerevisiae mix with nano-polyaniline (0.1 g/L), acid red 14 (500 mg/L), pH: 4, time: 60 min	PSO	-	-	Dönmez (2003) Ahmed et al. (2016)
/definition)	Advanced oxidation the process which of the aquatic system system (Redox). Photocatalytic proc pollutants with high uses light energy to Electrocatalytic deg sphere electrochem It involves the use of	n process: uses strong to a less to eess: an ad h concentra o drive poll gradation: a nical reaction	of dyes. The chemic g oxidants t oxic or non vanced oxic ation, com utant degr An electroo on where r atalysts to	cal advanced oxidat to transform contar -toxic substance by dation process, whi plexity and low biod adation catalytic reaction is reactants interact w lower activation en	s that are most used for ion (CAO) is defined as ninants or pollutants in the reduction-oxidation ch can be used to degrade degradability. The process defined as an inner <i>v</i> ith the electrode surface. ergy without affecting cions with high efficiency.
references to	Mazloomi, S.,	Bonyadi, Z	., Haghigh	at, G. A., Nourmora	di, H., Soori, M. M., &

	Process modelling and optimization. <i>Desalination and Water Treatment, 236,</i> 318–325. <u>https://doi.org/10.5004/dwt.2021.27679</u>
Follow up Questions	Is the modification or immobilization of yeast cells necessary?

Article #20 Notes: Removal of methylene blue by Saccharomyces cerevisiae: process modelling and optimization

Source Title	Removal of methylene blue by <i>Saccharomyces cerevisiae</i> : process modelling and optimization
Source citation (APA Format)	Mazloomi, S., Bonyadi, Z., Haghighat, G. A., Nourmoradi, H., Soori, M. M., & Eslami, F. (2021). Removal of methylene blue by Saccharomyces cerevisiae: Process modelling and optimization. <i>Desalination and Water Treatment</i> , <i>236</i> , 318–325. https://doi.org/10.5004/dwt.2021.27679
Original URL	https://www.sciencedirect.com/science/article/pii/S1944398624069741?ref=cra_js_challe nge&fr=RR-1
Source type	Journal Article
Keywords	Biodegradation, Saccharomyces cerevisiae, Methylene blue, Response surface methodology
#Tags	"2.2. Preparing the reaction mixtures" (methodology), "Results and discussion" (for optimal condition)
Summary of key points + notes (include methodology)	Methylene blue dye is one of the major pollutants within industrial wastewater. Yeast can biodegrade and adsorb the dye, thereby effectively removing it. Hence, using yeast would be cheap, and not dangerous due to the nontoxicity and nonpathogen nature of the yeast. Methodology: Various amounts of methylene blue dye, pH, reaction time, and amount of yeast were mixed in a solution. To assess the effectiveness of the yeast at removing the dye, spectroscopy was employed, and the wavelength of 660 nm was used. An equation was developed to determine the importance of the 4 mentioned, separate factors that affect

	 yeast's removal rate of MB. A fourier transformation was employed to find the absolute condition to maximize yeast's efficiency. Results: The optimal condition for yeast is pH of 9.35, 50.81 minutes reaction time, dye concentration of 14.37 mg/L, and 1.32 g/L of yeast. This results in removing 99.16% of the methylene blue dye present in the solution. After conducting multiple statistical tests, the model was determined to be statistically significant and viable at determining the optimal conditions. Furthermore, the model is best fitted to a quadratic with an R^2 of 0.984. Relationship of MB concentration and removal rate: Increasing concentration leads to a decrease of the yeast's effectiveness. Relationship of yeast dosage and removal rate: Increasing the concentration leads to an increase of the yeast's effectiveness. This is because more yeast provides more active sites, so the methylene dyes are detected by the yeasts more often. Relationship of contact time and removal rate: Increasing contact time leads to an increase of the yeast's effectiveness, until the change levels out at 55 about minutes. Relationship of pH and removal rate: Increasing the pH leads to an increase in removal rate because that makes the yeasts have a negative charge to attract the cationic dye easier. 									
Research Question/Proble m/ Need	What is the optimal condition fo	r the yeast	to remov	e methyler	ne blue dye	for a solution?				
Important Figures	$R(\%) = \frac{(C_0 - C_e)}{C_0} \times 100$ The equation for determining the removal rate of the dye. C is the concentration of methylene blue dye within the solution.									
	Name: "Range and levels of independent factors in the study"									
	Factor	Variable level								
		Code	-1	0	+1					
	MB (mg/L) Reaction time (min)	A B	10 10	55 35	100 60					
	Reaction time (min) <i>S. cerevisiae</i> dosage (g/L)	в С	10 0.2	35 0.85	60 1.5					
	Solution pH	D	0.2 4	0.85 7	1.5					
	This table is necessary to understand the following table that shows the result of the experiment. Name: "BBD matrix for MB removal by S. cerevisiae"									

	Run no Coded variable			Removal (%)	Run no	no Coded variable				Removal (%)		
		A	B	C	D			A	B	C	D	
	1	1	1	0	0	47.12	16	-1	0	0	-1	52.03
	2	0	-1	0	1	62.13	17	0	1	0	-1	38.03
	3	0	-1	1	0	63.15	18	0	0	0	0	63.24
	4	-1	-1	0	0	72.01	19	0	0	0	0	65.01
	5	-1	1	0	0	77.03	20	0	1	-1	0	36.15
	6	0	1	1	0	61.23	21	1	0	0	-1	52.16
	7	-1	0	1	0	93.14	22	0	0	-1	1	49.36
	8	0	0	0	0	66.05	23	0	1	0	1	56.12
	9	0	0	1	-1	47.12	24	1	0	0	1	51.02
	10	1	0	-1	0	48.12	25	-1	0	0	1	96.11
	11	-1 0	0	-1	0	57.09	26	0	0	-1	-1	36.12
	12 13	0	0 0	0 1	0 1	67.19 71.23	27 28	0 1	-1 -1	0 0	-1 0	46.13 58.03
	13 14	0	0	1	1	71.23 54.02	28 29	0	-1	0	0	58.03 67.08
	14 15	0	-1	_1 _1	0	54.02 45.29	29	0	0	0	0	67.08
												was 96.11% with
	shows	that a	ı high	pH is	sprefe	rred, the o	dosage	e of y	east s	should	d be s	and 10 pH. This somewhat close to ye is preferred.
VOCAB: (w/definition)	Response surface plot: A graph that provides a three-dimensional visual representation of the data to aid interpretation. A response surface for a similarity effect is shown in Figure 1 as an example. The two predictor variables X and Y are located on the two axes at the bottom of the coordinate cube.											
Cited references to follow up on	Aksu, Z. (2003). Reactive dye bioaccumulation by Saccharomyces cerevisiae. <i>Process Biochemistry, 38</i> (10), 1437–1444. <u>https://doi.org/10.1016/S0032-9592(03)00034-7</u>											
Follow up Questions	Do the optimal conditions change if different types of pollutant were added in addition to MB dye? What variable affects the removal rate the greatest? How would the yeast perform in other types of dye?											