
Impacts of Strokes on Gait: Over 12 million people worldwide suffer from a stroke yearly with 
more than 90% of stroke survivors suffering from some form of functional disabilities, and 80% 
having an unstable gait that improves to a certain extent within the first three to six months after 
a stroke, otherwise known as the late subacute phase as shown below. The lasting effects of a 

stroke on the movement of the ankle joint 
can cause stroke patients to adopt a 
sedentary lifestyle and be at risk of 
falling and seriously injuring themselves. 
Once the first six to twelve months 
post-stroke pass, recovery and mobility 
gain plateaus. However, there are few 
assistive technologies for gait stability for 

stroke survivors after the initial 6 to 12-month recovery period, as gait abnormalities continue to 
be present. The most common of these is foot drop, which impedes the dorsiflexion, or upward 
lifting of an individual’s foot which is vital to gait stability. Foot drop causes excessive 
plantarflexion, or downward flexing of the ankle resulting in the patient dragging their toes. This 
inability to make the foot clear the ground often causes patients to develop a gait in which they 
hoist their leg from the hip to provide the extra clearance necessary for their foot to swing 
forward unimpeded. This dragging of the foot also causes a serious risk of falls for the patient.  
 
Goals and Innovation of This Project: Ankle-foot orthoses (AFOs) are the technology most 
commonly used to combat foot drop. These devices generally hold the ankle immobile to prevent 
prevent the dragging of the toe to a certain extent. This cannot, however, facilitate the same level 
of dexterity and inherently shock-absorbant properties of natural ankle movement. Thus, in this 
project I aimed to develop a novel active orthosis that utilizes real-time EMG (muscle activity) 
data from the contralateral (non-impacted) side to predict gait cycle phase in the impacted side. 
This information would then be used to control the orthosis to assist dorsiflexion, the upward 
flexion of the foot, accordingly. This concept greatly improves on the accuracy of previous 
designs which used force-sensing resistors, which used the force exerted by the foot on the 
ground to determine where in the gait cycle an individual was, as mechanically intrinsic signals 
such as this introduce delay into the system. In order to create my 
AFO, I created a deep neural network which could process 
windows of EMG data to determine where in the gait cycle the 
individual’s other foot would be in a healthy gait. This replicates 
the process that would occur in my final design (shown to the 
right) as the strong and consistent EMG signals measured in the 
tibialis anterior (it maintains a consistent pattern through the 
phases of the gait cycle) of the healthy leg are processed and used 
to control the AFO accordingly. I also created a physical prototype 
of my AFO which emulated its envisioned functionality. 



 
The Gait Cycle and Data Preparation: My project relies on the symmetry of the gait cycle 
(shown below) as the EMG data from one leg must be used to determine where in the gait cycle 

the other leg should be. As shown 
in the diagram, the gait cycle has 
two main phases, generally divided 
into seven subphases and can also 
be measured in percentage. At 
every point during the gait cycle, 
the other leg will be at a very 

specific corresponding part of the gait cycle. The data (from the MyPredict database) used for 
my initial machine learning model was split into one-second windows and labeled based on 
which of these seven subphases the 
window ended in. This data (shown 
to the right) was peak-normalized 
and filtered to eliminate the natural 
differences between the peaks in the 
EMG data of different gait cycles. In 
the first phase of the ML model, 
thirty samples from one individual 
were used whereas the second phase 
used 1500 individually labeled pieces of data which were labeled based on the percentage of the 
gait cycle they ended in, allowing for a greater degree of accuracy in my predictions and thus, 
the eventual motion of the AFO. 
 
ML Model Testing and Phases: In the first phase of machine learning models I trained and 
tested, I used 30 samples of data, which, though a very low number, allowed me to identify if the 

model was more accurate with filtered or unfiltered data. The model 
achieved a maximum accuracy of 85.71% with the unfiltered data (only 
peak-normalized) and 71.43% with the filtered data. Additionally, the 
accuracy over the 50 epochs for which the model was trained remained 
far more consistent with the model’s confidence in its predictions with 
the unfiltered data (shown left) than the 
filtered data (below unfiltered). The 
model’s confidence is represented by 
loss; a lower loss means the model is 
more confident in its predictions. In the 
second phase of machine learning 
models, I labeled 1500 one-second 

windows of gait data from five different individuals (300 from 



each), using four individuals for training and the other for my testing set. In this phase I trained 
two much larger models with this data. The larger of these two performed better, as shown in the 
confusion matrix above comparing the actual percentage and percentage predicted by the model, 
as its predicted values had a standard deviation of ±10.8% of a gait cycle. 
 
Prototype Iterations and Improvements: Design version 1.0 (below) was tested by pulling the 

strings anchored to the front of the AFO toward the ankle of the foot 
brace used in the designs which was worn on a 3D-printed foot with a 
moblise ankle joint. This hoever, did not result in the desired upward 
movement of the device. Version 2.0 (below) was designed to have the 
pulleys placed above the ankle. While the mpre 
upward motion of the strings caused the desired 

motion, the motors (with the pulleys attached to them) could not be 
securely anchored. Version 2.0 also placed the electronics behind the brace. 
Version 3.0 (below) had the 3D-printed foot anchored to the small stool I 

made for that purpose and had the motors 
placed above the stool to ensure they were 
secure and the electronics placed similarly. Version 3.1 saw this 
design programmed to emulate normal foot movement over the 
gait cycle at 20% speed while version 3.2 was programmed to 
mave the AFO to a specific angle based on manually inputted gait 
percentages. Version 3.3 will see the machine learning model 

interfaced with the AFO such that that the Arduino moves the AFO based on the model’s 
predictions for a running input of EMG data. In order to get closer to a fully functional design, 
version 4.0 (below) will have a much stronger motor situated at the ankle connected to a rigid 

frame which prevents the tether strings from impeding activity and allows the 
device to move only the distance the patient has not, 
preventing muscle deterioration. Version 5.0 will include 
the EMG activity measuring array on the unimpacted leg 
(right), using surface EMG to minimize intrusivity. This 

will allow the system to respond to actual inputs from the patient, making it a fully functional 
device. 
 
Future Research: As creating, designing, and improving a piece of assistive technology, 
especially wearable technology, such as my novel AFO require working with actual patients to 
ensure the device is comfortable and effective. Thus I hope to work with stroke patients, such as 
my grandfather, to iterate on my designs in the future. I am also very interested in soft robotics 
and would like to explore its potential applications in my AFO. I truly believe that through my 
research, I can create a device that will allow people like my grandfather to walk confidently 
without fear. 


