
public class BinaryCounting {
 public static void main(String[] args) {
 String s = "The quick brown fox jumped over the lazy dogs.";
 String binaryRepresentation = totalBinaryString(s);

 boolean found = true;
 int i = 0;
 while (found) {
 String binaryString = toNormalBinary(i);
 //System.out.println("Searching for: " + binaryString);
 if (contains(binaryRepresentation, binaryString)) {
 binaryRepresentation =
totalSearchAndRemove(binaryRepresentation, binaryString);
 //System.out.println("New binary representation: " +
binaryRepresentation);
 }
 else {
 found = false;
 //System.out.println("The smallest binary string not
found is: " + binaryString);
 }
 i++;
 }

 String noLeadingZerosFinalBinary =
removeLeadignZeros(binaryRepresentation);
 //System.out.println("Final binary representation without
leading zeros: " + noLeadingZerosFinalBinary);

 String octalRepresentation =
binaryToOctal(noLeadingZerosFinalBinary);
 //System.out.println("Final octal representation: " +
octalRepresentation);

 found = true;
 i = 0;
 while (found) {
 String octalString = toNormalOctal(i);
 //System.out.println("Searching for: " + octalString);
 if (contains(octalRepresentation, octalString)) {
 octalRepresentation =
totalSearchAndRemove(octalRepresentation, octalString);
 //System.out.println("New octal representation: " +
octalRepresentation);
 }
 else {
 found = false;
 //System.out.println("The smallest octal string not
found is: " + octalString);
 }

 i++;
 }

 System.out.println(i-2);
 }

 public static int toAscii(char c) {
 return (int) c;
 }

 public static String toNormalBinary(int n) {
 return Integer.toBinaryString(n);
 }

 public static String toNormalOctal (int n) {
 return Integer.toOctalString(n);
 }

 public static String toBinary(int n) {
 return String.format("%8s",
Integer.toBinaryString(n)).replace(' ', '0');
 }

 public static String totalBinaryString(String s) {
 String binary = "";
 for (int i = 0; i < s.length(); i++) {
 char c = s.charAt(i);
 int asciiValue = toAscii(c);
 String binaryString = toBinary(asciiValue);
 binary += binaryString;
 }
 return binary;
 }

 public static boolean contains(String s, String sub) {
 return s.contains(sub);
 }

 public static String searchAndRemoveStart (String s, String sub) {
 int index = s.indexOf(sub);
 String start = s.substring(0, index);
 String end = s.substring(index + sub.length());
 return start+end;
 }

 public static String searchAndRemoveEnd (String s, String sub) {
 int index = s.lastIndexOf(sub);
 String start = s.substring(0, index);
 String end = s.substring(index + sub.length());
 return start+end;

 }

 public static String totalSearchAndRemove (String s, String sub) {
 String result = s;
 //System.out.println("First index: " + firstIndex);
 result = searchAndRemoveStart(s, sub);
 if (result.lastIndexOf(sub) != -1) {
 result = searchAndRemoveEnd(result, sub);
 }
 return result;
 }

 public static String removeLeadignZeros (String s){
 int i = 0;
 while (i < s.length() && s.charAt(i) == '0') {
 i++;
 }
 return s.substring(i);
 }

 public static String binaryToOctal(String binary) {
 String octal = "";
 if (binary.length() % 3 != 0) {
 int leadingZeros = 3 - (binary.length() % 3);
 for (int i = 0; i < leadingZeros; i++) {
 binary = "0" + binary;
 }
 }
 for (int i = 0; i < binary.length(); i += 3) {
 String threeBits = binary.substring(i, i + 3);
 int octalDigit = Integer.parseInt(threeBits, 2);
 octal += Integer.toString(octalDigit);
 }
 return octal;
 }

 public static String octalToDecimal(String octal) {
 String decimal = "";
 decimal = Long.toString(Long.parseLong(octal, 8));
 return decimal;
 }
}

