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Introduction
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History

Perceptron: Neural network with no hidden layer and Heaviside
activation function. 1

With this model two sets of points can be classified if and only if they
are linearly separable. To separate N generic points in Rn by a
one-hidden layer model with Heaviside activation, we need at least
[N/n] (the smallest integer greater than or equal to N/n) units in the
hidden layer.2

1Rosenblat, F., 1958. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6), pp.386-408.
2Baum, E.B., 1988. On the capabilities of multilayer perceptrons. Journal of
complexity, 4(3), pp.193-215.
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Assumptions

1- The output of the jth unit of the input layer is x0j.

xi+1,k = σ
(∑

j
wikjxij − θi,k

)
. (1)

2 - There is no activation function applied to the output layer and
there is only one output.
A single hidden-layer

y =

r∑
i=1

ciσ
( n∑

j=1
wi,jxj − θi

)
. (2)

wi,j: weight between the jth unit of the input and the ith unit in the
hidden layer.
θi is the threshold at the ith unit of the hidden layer.
ci is the weight between the ith unit of the hidden layer and the
output. 4



Model

For one hidden layer

y =

r∑
i=1

ciσ(wi.x − θi). (3)

For two hidden layers

y =

s∑
k=1

dkσ
( r∑

i=1
cikσ(wik.x − θik)− γk

)
. (4)
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Density

Consider the set

M(σ) = span{σ(w.x − θ) : θ ∈ R,w ∈ Rn}. (5)

For which σ it is true that ∀f ∈ C(Rn), compactK ⊂ Rn, ϵ > 0,

∃g ∈ M(σ) s.t. max
x∈K

|f(x)− g(x)| < ϵ (6)
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Main result

Theorem 3.1
Let σ ∈ C(R). Then M(σ) is dense in C(Rn), in the topology of
uniform convergence on compacta, if and only if σ is not a polynomial.

If σ is a polynomial of degree m, then σ(w.x − θ) is also a polynomial
of degree at most m, thus M(σ) is not dense in C(Rn).

The main part is the converse result.
Is it possible to restrict w and θ, and enlarge the class of eligible σ

and still obtain the desired density?
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Ridge functions

Definition
Ridge functions are multivariate functions of the form

g(a1x1 + . . .+ anxn) = g(x.a) (7)

where g : R → R and a = (a1, . . . , an) ∈ Rn \ {0} is a fixed direction.
Set

R = span{g(a.x) : a ∈ Rn, g : R → R} (8)

R contains all functions of the form cos(a.x) and sin(a.x). So ridge
functions have the density property.
Dense subsets of ridge functions include ea.x and (a.x)k, k = 0, 1, . . ..
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Ridge functions

Theorem 3.2
The set of ridge functions

R(A) = span{g(a.x) : a ∈ A, g ∈ C(R)} (9)

is dense in C(Rn), if and only if there is no trivial homogeneous
polynomial that vanishes on A.
Proposition 3.3
Assume Λ,A ⊂ R for which

N (σ; Λ,Θ) = span{σ(λt − θ) : λ ∈ Λ, θ ∈ Θ} (10)

is dense in C(R) and A is such that R(A) is dense in C(Rn). Then

M(σ; Λ× A,Θ) = span{σ(w.x − θ) : w ∈ Λ× A, θ ∈ Θ} (11)

is dense in C(Rn)

9



Ridge functions

Proof. Let f ∈ C(K). Since R(A) is dense in C(K),

∀ϵ > 0 ∃gi ∈ C(R), ai ∈ A, i = 1, . . . , r s.t.

∀x ∈ K
∣∣∣f(x)− r∑

i=1
gi(ai.x)

∣∣∣ < ϵ

2 .

(12)

Since K is compact, {ai.x : x ∈ K} ⊆ [αi, βi]. Also, N (σ; Λ,Θ) is dense
in C[αi, βi], ∃cij ∈ R, λij ∈ Λ, and θij ∈ Θ, j = 1, . . . ,mi, i = 1, . . . , r
for which∣∣gi(t)−

mi∑
j=1

cijσ(λi,jt − θij)
∣∣∣ < ϵ

2r , ∀t ∈ [αi, βi]

∣∣f(x)− r∑
i=1

mi∑
j=1

cijσ(λi,jai.x − θij)
∣∣∣ < ϵ ∀x ∈ K. (13)
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Ridge functions

Proposition 3.4
Let σ ∈ C∞(R) and assume σ is not a polynomial. Then N (σ;R,R) is
dense in C(R).

Proof. Since σ ∈ C∞(R) and
[σ((λ+ h)t − θ0)− σ(λt − θ0)]/h ∈ N (σ;R,R) for all h ̸= 0, it follows
that:

dk

dλkσ(λt − θ0)
∣∣∣
λ=0

= tkσ(k)(−θ0) (14)

is contained in N (σ;R,R) for any k. Since σ(k)(−θ0) ̸= 0, the set
N (σ;R,R) contains all polynomials, and by Weierstrass Theorem,
N (σ;R,R) in dense in C(K) for every compact K ⊂ R.
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Ridge functions

Corollary 3.5
Let Λ be any set containing a sequence of values tending to zero, and
let Θ be any open interval. Let σ : R → R be such that σ ∈ C∞(Θ)

and not a polynomial on Θ. Then N (σ; Λ,Θ) is dense in C(R).
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Ridge functions

To weaken the smoothness demands:
Proposition 3.7
Let σ ∈ C(R) and assume σ is not a polynomial. Then N (σ;R,R) is
dense in C(R).

Now to consider a class of discontinuous functions, same results hold
if σ that is bounded and Riemann-integrable on every finite interval.
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Ridge functions

Proposition 3.8
Assume σ : R → R bounded and Riemann-integrable on every finite
interval. Assume σ is not a polynomial. Then N (σ;R,R) is dense in
C(R).
To allow a finite set of gains:
Corollary 3.9
Let Λ be any set containing a sequence of values tending to zero and
let Θ be any open interval. Assume σ : R → R is bounded and
Riemann-integrable on Θ and not a polynomial a.e on Θ. Then
N (σ; Λ,Θ) is dense in C(R).
.
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Dilations (the set Λ) are not necessary

Proposition 3.10
Assume σ ∈ C(R) ∩ L1(R) (bounded, continuous and non-decreasing)
and not constant. Then N (σ; 1,R) is dense in C(R).

Proof.
Assume σ ∈ C(R) ∩ L1(R). Continuous linear functionals on C(R are
represented by Borel measures of finite total variations and compact
support. If N (σ; 1,R) is not dense in C(R), ∃µ s.t.∫ +∞

−∞
σ(t − θ)dµ(t) = 0 =⇒ σ̂(ω)µ̂(ω) = 0,∀ω ∈ R. (15)

µ̂ is an integral function (exponential type) and σ̂. Therefore σ̂ must
vanish where µ̂ ̸= 0, this gives σ = 0.
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Mean-periodic functions

Definition
Mean-periodic functions are the solutions of homogeneous convolution
equations.3
Consider a complex-valued function f of a real variable. The function
f is periodic with period a precisely if for all x ∈ R, we have
f(x)− f(x − a) = 0. This can be written as:∫

f(x − y)dµ(y) = 0 (16)

where µ is the difference between the Dirac measures at 0 and a.
A mean-periodic function is a function f for which there exists a
compactly supported (signed) Borel measure µ for which f ∗ µ = 0.4

3Delsarte, J., 1935. Les fonctions moyenne-périodiques. J. Math. Pures Appl,
14(403453), p.9.
4Schwartz, L., 1947. Théorie générale des fonctions moyenne-périodiques. Annals
of Mathematics, pp.857-929. 16



Mean-periodic functions

Definition
A function f ∈ C(Rn) is mean-periodic if

span{f(x − a) : a ∈ Rn} (17)

is not dense in C(Rn).
Mean-periodic functions are characterized by the functions of the
form tmeγt, where γ ∈ C.
Proposition 3.11
Let σ ∈ C(R), not a polynomial. For any Λ that contains a sequence
tending to a finite limit point, the set N (σ; Λ,R) is dense in C(R).
Proposition 3.12
Let σ ∈ C(R). If σ ∈ Lp(R), 1 ≤ p < ∞( bounded, has a limit at +∞
or −∞ and is not the constant function). Then σ is not
mean-periodic.
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Interpolation

Assume we are given σ ∈ C(R). For k distinct points {xi}k
i=1 ⊂ Rn,

and associated data {αi}k
i=1 ⊂ R, can we always find m, {wj}m

j=1 ⊂ Rn

and {cj}m
j=1,{θj}m

j=1 ⊂ R for which
m∑

j=1
cjσ(wj.xi − θj) = αi, ∀i = 1, . . . , k? (18)

If σ is a sigmoidal, continuous and nondecreasing function, we can
always interpolate with m = k. 5

If σ is any bounded, continuous, non-decreasing and nonlinear
function which has a limit at +∞ or −∞. 6

5Ito, Y., 1996. Supper position of linearly independent functions and finite
mapping by neural networks. Math. Scientists, 21, pp.27-33.
6Huang, G.B. and Babri, H.A., 1998. Upper bounds on the number of hidden
neurons in feedforward networks with arbitrary bounded nonlinear activation
functions. IEEE transactions on neural networks, 9(1), pp.224-229. 18



Interpolation

Theorem 5.1 Let σ ∈ C(R) is not a polynomial. For any k distinct
points {xi}k

i=1 ⊂ Rn, and associated data {αi}k
i=1 ⊂ R, there exists m,

{wj}k
j=1 ⊂ Rn and {cj}k

j=1,{θj}k
j=1 ⊂ R such that

k∑
j=1

cjσ(wj.xi − θj) = αi, ∀i = 1, . . . , k. (19)

Moreover, if σ is not mean-periodic, then we may choose
{wj}k

j=1 ⊂ Sn−1, where

Sn−1 = {y : ||y||2 = 1}. (20)

If σ is a polynomial, then the ability to interpolate depends on the
choice of points and the degree of σ.
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Degree of approximation

For a given σ, for each r we set

Mr(σ) =
{ r∑

i=1
ciσ(wi.x − θi) : ci, θi ∈ R,wi ∈ Rn

}
. (21)

We know if σ is not a polynomial, then ∀f ∈ C(K), ∃gr ∈ Mr(σ)s.t.

lim
r→∞

max
x∈K

|f(x)− gr(x)| = 0. (22)

What can we say about the rate of approximation?
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Degree of approximation

For functions defined on Bn, the Sobolev space Wm
p is defined as the

completion of Cm(Bn) w.r.t the norm

||f||m,p =

{
(
∑

0≤|k|≤m ||Dkf||pp)1/p , 1 ≤ p < ∞
max0≤|k|≤m ||Dkf||pp)∞ , p = ∞

(23)

Set
Bm

p := {f : f ∈ Wm
p , ||f||m,p ≤ 1}. (24)

Considering the lower bounds:

E(f;Mr(σ);X) = inf
g∈Mr(σ)

||f − g||X ≥ inf
g∈Rr(σ)

||f − g||X = E(f;Rr(σ);X)

(25)
where

Rr =
{ r∑

i=1
gi(ai.x) : ai ∈ Rn, gi ∈ C(R), i = 1, . . . , r.

}
. (26)
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Degree of approximation

Maiorov (1999):7
Assume m ≥ 1, n ≥ 2. Then ∀r ∃f ∈ Bm

2 for which

Cr−m/(n−1) ≤ E(f;Rr;L2) ≤ Cr−m/(n−1) (27)

Theorem 6.2 For each p ∈ [1,∞],m ≥ 1,n ≥ 2,

E(Bm
p ;Rr;Lp) ≤ Cr−m/(n−1) (28)

in which C is independent of r.

Using ridge functions, we can approximate at least as well as we can
approximate with any polynomial space contained therein.

7Maiorov, V.E., 1999. On best approximation by ridge functions. Journal of
Approximation Theory, 99(1), pp.68-94.
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Degree of approximation

Proposition 6.3
There exists σ ∈ C∞(R), sigmoidal and strictly increasing s.t.

∀g ∈ Rr, ϵ > 0 ∃ci, θi ∈ R,wi ∈ Rn, i = 1, . . . , r + n + 1

s.t.
∣∣∣g(x)− r+n+1∑

i=1
ciσ(wi.x − θi)

∣∣∣ < ϵ ∀x ∈ Bn. (29)

Corollary 6.4
There exists σ ∈ C∞(R), sigmoidal and strictly increasing for which

E(Bm
p ;Mr;Lp) ≤ Cr−m/(n−1), ∀p ∈ [1,∞],m ≥ 1,n ≥ 2. (30)
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Degree of approximation

Theorem 6.6
Let Qr : Lp → Mr(σ) be any method of approximation where ci, θi
and wi, i = 1, . . . , r are continuously dependent on f. Then

sup
f∈Bm

p

||f − Qrf||p ≥ Cr−m/n. (31)

for some C independent of r.
Theorem 6.7
For logistic sigmoid activation function σ(t) = 1

1 + e−t

E(Bm
p ;Mr(σ);Lp) ≥ C(r log r)−m/n (32)
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Upper bounds

If σ ∈ C∞(Θ) on some open interval Θ and σ not a polynomial on Θ.
Then ∀p ∈ [1,∞],m ≥ 1,n ≥ 2

E(Bm
p ;Mr(σ);Lp) ≤ Cr−m/n (33)

Mhaskar (1996)
The optimal order of approximation from Mr(σ) will not be better
than what could be obtained by approximating from the polynomial
space Pk of dimension r ≍ kn.
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Degree of approximation

Petrushev 1998:
For each k ∈ Z+, let

σk(t) =
{

tk, t ≥ 0,
0, t < 0.

(34)

Then
E(Bm

2 ;Mr(σk);L2) ≤ Cr−m/n (35)

for m = 1, . . . , k + 1 +
(n − 1)

2 .
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Degree of approximation

Makovoz 1996:
Let K be a bounded subset of a Hilbert space H. Let f ∈ coK. Then
there exists an fr of the form fr =

∑r
i=1 aigi for some gi ∈ K,

ai ≥ 0,i = 1, . . . , r and
∑r

i=1 ai ≤ 1, satisfying

||f − fr||H ≤ 2ϵr(K)√
r (36)

where
ϵr(K) = inf{ϵ > 0 : K can be covered by r sets of diameter ≤ ϵ} for

m = 1, . . . , k + 1 +
(n − 1)

2 .
If σ is a piecewise continuous sigmoidal function

E(B(n+1)/2
2 ;Mr(σ);L2) ≤ Cr−(n+1)/2n (37)
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Two hidden layers

For a single hidden layer, there is an intrinsic lower bound on the
degree of approximation which depends on the number of units used.
However, there is no theoretical lower bound on the error of
approximation if we allow two hidden layers.
Theorem 7.1
There exist an activation function σ, which is C∞, strictly increasing,
sigmoidal which

∀f ∈ C[0, 1]nandϵ > 0, ∃di, cij, θij, γi,wi,j ∈ Rn s.t.∣∣∣f(x)− 4n+3∑
i=1

diσ
( 2n+1∑

j=1
cijσ(wij.x + θij) + γi

)∣∣∣ < ϵ, ∀x ∈ [0, 1]n. (38)
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Questions?
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