Project Notes:

Project Title: Investigating the Effects of Amyloid Plaques on Oxidative Stress throughout the Life Cycle of C. elegans

Name: Mary O'Brien

<u>Note Well:</u> There are NO SHORT-cuts to reading journal articles and taking notes from them. Comprehension is paramount. You will most likely need to read it several times, so set aside enough time in your schedule.

Contents:

KNOWLEDGE GAPS:	4
LITERATURE SEARCH PARAMETERS:	4
TAGS:	8
ARTICLE #1 NOTES: NEURONAL SUBSTANCE P DRIVES METASTASIS THROUGH AN EXTRACELLULAR RNA-TLR7 AXIS	9
ARTICLE #2 NOTES: ZOONOTIC POTENTIAL OF A PANGOLIN CORONAVIRUS	11
ARTICLE #3 NOTES: LARGE-SCALE INFORMATIC ANALYSIS TO ALGORITHMICALLY IDENTIFY BLOOD BIOMARKERS OF NEUROLOGICAL DAMAGE	13
ARTICLE # 4 NOTES: NEW INSIGHTS INTO THE GENETIC ETIOLOGY OF ALZHEIMER'S DISEASE AND RELATED DEMENTIAS	17
ARTICLE #5 NOTES: ANTIGEN-SPECIFIC AGE-RELATED MEMORY CD8 T CELLS INDUCE AND TRACK ALZHEIMER'S-LIKE NEURODEGENERATION	19
ARTICLE #6 NOTES: UNIVERSAL AMPLIFICATION-FREE MOLECULAR DIAGNOSTICS BY BILLIO FOLD HIERARCHICAL NANOFLUIDIC CONCENTRATION	N- 22

ARTICLE #7 NOTES: SPATIAL CELL TYPE COMPOSITION IN NORMAL AND ALZHEIMERS HUMA BRAINS IS REVEALED USING INTEGRATED MOUSE AND HUMAN SINGLE CELL RNA	4N
SEQUENCING	25
ARTICLE #8 NOTES: CORRELATION OF PRESYNAPTIC AND POSTSYNAPTIC PROTEINS WITH PATHOLOGY IN ALZHEIMER'S DISEASE	29
ARTICLE #9 NOTES: DYSFUNCTION OF THE SNARE COMPLEX IN NEUROLOGICAL AND PSYCHIATRIC DISORDERS	33
ARTICLE #10 NOTES: SYNAPTIC BIOMARKERS IN THE CEREBROSPINAL FLUID ASSOCIATE DIFFERENTIALLY WITH CLASSICAL NEURONAL BIOMARKERS IN PATIENTS WITH ALZHEIMER DISEASE AND FRONTOTEMPORAL DEMENTIA	′S 36
PATENT ENTRY #1 NOTES: USE OF APOE4 MOTIF-MEDIATED GENES FOR DIAGNOSIS AND TREATMENT OF ALZHEIMER'S DISEASE	39
PATENT ENTRY #2 NOTES: COMPOSITIONS AND METHODS FOR THE TREATMENT OF ALZHEIMER'S DISEASE AND OTHER NEUROGENERATIVE DISEASE	42
ARTICLE #11 NOTES: RECENT ADVANCES IN ALZHEIMER'S DISEASE: MECHANISMS, CLINICAL TRIALS AND NEW DRUG DEVELOPMENT STRATEGIES	45
ARTICLE #12 NOTES: IS MITOCHONDRIA DNA VARIATION A BIOMARKER FOR AD?	50
ARTICLE #13 NOTES: <i>METHODOLOGICAL CONSIDERATIONS FOR HEAT SHOCK OF THE</i> NEMATODE CAENORHABDITIS ELEGANS	53
ARTICLE #14 NOTES: THE €100 LAB: A 3D-PRINTABLE OPEN-SOURCE PLATFORM FOR FLUORESCENCE MICROSCOPY, OPTOGENETICS, AND ACCURATE TEMPERATURE CONTROL DURING BEHAVIOUR OF ZEBRAFISH, DROSOPHILA, AND CAENORHABDITIS ELEGANS	56
ARTICLE #15 NOTES: MODELING ALZHEIMER'S DISEASE IN CAENORHABDITIS ELEGANS	59
ARTICLE #16 NOTES: TEMPORAL DYNAMICS OF B-AMYLOID ACCUMULATION IN AGING AND ALZHEIMER DISEASE) 62

ARTICLE #17 NOTES: FLUORESCENT PROTEIN METHODS: STRATEGIES AND APPLICATIONS	64
ARTICLE #18 NOTES: OXIDATIVE STRESS AND BETA AMYLOID IN ALZHEIMER'S DISEASE. WHICH COMES FIRST: THE CHICKEN OR THE EGG?	66
ARTICLE #19 NOTES: OXIDATIVE STRESS AND AGING AS RISK FACTORS FOR ALZHEIMER'S DISEASE AND PARKINSON'S DISEASE: THE ROLE OF THE ANTIOXIDANT MELATONIN	68
ARTICLE #20 NOTES: OXIDATIVE STRESS IN AGE-RELATED NEURODEGENERATIVE DISEASES: AN OVERVIEW OF RECENT TOOLS AND FINDINGS	70

Knowledge Gaps:

This list provides a brief overview of the major knowledge gaps for this project, how they were resolved and where to find the information.

Knowledge Gap	Resolved By	Information is located	Date resolved
How are current blood tests are preformed	Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration and articles mentioning ELISA	<u>doi.org/10.1073/pnas.1</u> 904513116	9/21/24
What is SNAP-25	Correlation of Presynaptic and Postsynaptic Proteins with Pathology in Alzheimer's Disease	<u>doi.org/10.3390/ijms25</u> <u>063130</u>	9/29/24
How to induce Amyloid plaques in C. elegans	Methodological considerations for heat shock of the nematode Caenorhab ditis elegans	<u>doi.org/10.1016/j.ymet</u> <u>h.2014.04.015</u>	11/02/24

Literature Search Parameters:

These searches were performed between 07/03/2024 and XX/XX/2024. List of keywords and databases used during this project.

Database/search engine	Keywords	Summary of search

Nature	Neurons, cancer	I found the article <i>Neuronal</i> substance P drives metastasis through an extracellular RNA- TLR7 axis
Nature	Zoonotic diseases, viral transmission, pathogenesis	I found the article Zoonotic Potential of a Pangolin Coronavirus
Proceedings of the National Academy of Sciences	Alzheimer's, blood biomarkers	I found the article <i>Large-scale</i> informatic analysis to algorithmically identify blood biomarkers of neurological damage
Nature	Alzheimer's diagnosis, biomarkers, genetics	I found the article New insights into the genetic etiology of Alzheimer's disease and related dementias
Proceedings of the	Alzheimer's, neurodegeneration,	I found the article Antigen-
National Academy of	biomarkers	specific age-related memory
Sciences		CD8 T cells induce and track
		Alzheimer's-like
		neurodegeneration
PNAS	Biomarkers, diagnostics	I found the article Universal
		amplification-free molecular
		diagnostics by billion-fold
		hierarchical nanofluidic
		concentration
Nature Scientific	Alzheimer's, cell types	I found the article Spatial cell
Reports		type composition in normal and
		Alzheimers human brains is
		revealed using integrated
		mouse and human single cell
		RNA sequencing
Google Scholar	SNAP-25, Alzheimer's	I found the article Dysfunction
		of the SNARE complex in
		neurological and psychiatric
		disorders.
Google Scholar	SNARE, Alzheimer's	I found the article Synaptic
		biomarkers in the cerebrospinal

	Alzheimer's treatment	fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer's disease and frontotemporal dementia.
Google Patents	Alzheimer 3, treatment	motif-mediated genes for diagnosis and treatment of alzheimer's disease.
Google Patents	Alzheimer's, treatment	I found the patent <i>Compositions</i> and methods for the treatment of Alzheimer's disease and other neurogenerative disease.
Nature	Alzheimer's, treatment	I found the article <i>Recent</i> advances in Alzheimer's disease: mechanisms, clinical trials and new drug development strategies.
Google Scholar	Oxidative stress, Alzheimer's	I found the article <i>Is</i> <i>Mitochondria DNA Variation a</i> <i>Biomarker for AD</i> .
Google Scholar	Heat stress, C. elegans	I found the article Methodological considerations for heat shock of the nematode Caenorhabditis elegans.
Google Scholar	FlyPi	I found the article The € 100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans.

Google Scholar	C. elegans, Alzheimer's	I found the article Modeling
		Alzheimer's Disease
		in Caenorhabditis elegans.
Google Scholar	Alzheimer's, Amyloid beta, oxidative stress	I found the article Oxidative
		Stress and Beta Amyloid in
		Alzheimer's Disease. Which
		Comes First: The Chicken or the
		Egg?
Google Scholar	Amyloid beta over time	I found the article Temporal
		Dynamics of β-Amyloid
		Accumulation in Aging and
		Alzheimer Disease
ScienceDirect	GFP, C. elegans, Fluorescence	I found the article Fluorescent
		Protein Methods: Strategies and
		Applications
Google Scholar	Oxidative stress and Amyloid beta	I found the article Oxidative
		Stress and Beta Amyloid in
		Alzheimer's Disease. Which
		Comes First: The Chicken or the
		Egg?
Google Scholar	Oxidative stress, aging, Alzheimer's	I found the article Oxidative
		Stress and Aging as Risk Factors
		for Alzheimer's Disease and
		Parkinson's Disease: The Role of
		the Antioxidant Melatonin
Google Scholar	Oxidative stress, age, Alzheimer's	I found the article Oxidative
		Stress in Age-Related
		Neurodegenerative Diseases: An
		Overview of Recent Tools and
		Findings

Tags:

Tag Name	
#methods	#introduction

Article #1 Notes: *Neuronal substance P drives metastasis through an extracellular RNA-TLR7 axis*

Source Title	Nature
Source citation (APA Format)	Padmanaban, V., Keller, I., Seltzer, E. S., Ostendorf, B. N., Kerner, Z., & Tavazoie, S. F. (2024). Neuronal substance P drives metastasis through an extracellular RNA– TLR7 axis. <i>Nature, 633</i> (8028), 207–215. <u>doi.org/10.1038/s41586-024-07767-5</u>
Original URL	www.nature.com/articles/s41586-024-07767-5#Abs1
Source type	Journal article
Keywords	Metastasis, Cancer, Breast cancer, Sensory nerves, Aprepitant, Neuronal substance P
#Tags	#introduction
Summary of key points + notes (include methodology)	Tumor innervation has been linked to worse cancer patient outcomes due to a higher likelihood of metastasis. In breast cancer, interactions with sensory nerves appear to be a significant factor in the potential for metastasis of the cancer. The mechanisms of these interactions and the axis that helps tumors grow and spread is starting to be utilized in research for how to stop metastasis. In this axis, the endothelium of these metastatic tumors release SLIT2, an axon-guidance molecule. SLIT2 from the endothelium increases sensory innervation. Then, interactions with the cancerous cells causes spontaneous calcium activity, which triggers the release of neuropeptide substance P (SP). The SP released from the sensory nerves acts on tumoral tachykinin receptors (TACR1). The SP triggers apoptosis and the release of single stranded RNAs (ssRNAs), but only in cells with high levels of TACR1s. The remaining cells, which have low levels of TACR1s, receive the ssRNAs with another type of receptor called a Toll-like receptor 7 (TLR7), causing non-canonically active PIK signaling. PI3K signaling causes tumor invasion, growth, and metastasis. Thankfully, a common anti-nausea medication for chemotherapy patients, named aprepitant, has been shown stop the functional interactions between breast cancer cells and sensory nerves, therefore regulating metastasis
Research Question/Problem/ Need	How does the presence of sensory nerves in breast cancer tumors affect metastasis?

Important Figures	$ \begin{array}{ c c c c } \hline a & & & & & & & & & & & & & & & & & &$
	Veh. Aprep. 1,500 PDX 2 Veh. Aprep. 1,500 PDX 2 r = 4 or 5 per group finded attraction (weeks) SP resonance of the state o
VOCAB: (w/definition)	Neurotrophic factors- a family of proteins that help neurons grow, function, and survive, in mammals, they are controlled by a family of receptors called tropomyosin-related kinases (Trks). Endothelium- a layer of endothelial cells that line the blood and lymphatic vessels, allowing the blood and tissue to interact
Cited references to follow up on	Balood, M., Ahmadi, M., Eichwald, T., Ahmadi, A., Majdoubi, A., Roversi, K., Talbot, S. (2022). Nociceptor neurons affect cancer immunosurveillance. <i>Nature</i> , <i>611</i> (7935), 405–412. <u>doi.org/10.1038/s41586-022-</u> <u>05374-w</u>
Follow up Questions	How does the Aprepitant affect this pathway molecularly? Are there other methods to halt this pathway? Could there be a way to stop the innervation of these cells in the first place?

Article #2 Notes: *Zoonotic Potential of a Pangolin Coronavirus*

Source Title	Nature Microbiology
Source citation (APA Format)	Shin, WJ., Kang, S., & Jung, J. U. (2023). Zoonotic potential of a Pangolin coronavirus. <i>Nature Microbiology, 8</i> (10), 1760–1761. https://doi.org/10.1038/s41564-023-01478-9
Original URL	https://www.nature.com/articles/s41564-023-01478-9
Source type	Scientific journal article
Keywords	Viral pathogenesis, viral transmission, zoonoses
#Tags	#introduction
Summary of key points + notes (include methodology)	Pangolin-related Coronavirus, specifically PgCoV GD, are a potential source of the COVID-19 pandemic, although the actual direct intermediate species is unknown. A major difference between SARS-CoV-2 and PgCoV GD is the lack of the polybasic furin cleavage site, found in SARS-CoV-2, in PgCoV GD, but otherwise COVID-19 appears to act like a more easily transmittable PgCoV GD. While SARS-CoV-2 has a higher competitive fitness, PgCoV GD still shows potential for transmission to humans and other naïve animals.
Research Question/Problem/ Need	Could Pangolin Coronavirus spread to humans, and if so, what similarities between Humans and Pangolins would allow it to?

Important Figures							
		SARS-CoV-2	Bat RaTG13	Pangolin GD CoV	Pangolin GX CoV	Bat ZXC21	Bat ZC45
	ACE2 usage	↓ Yes		¥ Yes			
	Polybasic furin cleavage site	Yes		No			
	Animal infectivity	Yes		Yes			
	Replication in human epithelial cells	Yes		Yes			
	Transmission	Yes		Low efficiency			
	Neutralization phenotype	Yes		Sensitive to most RBD-binding nAbs			
	Sensitivity to antiviral drugs	Yes		Yes			
	Cross protection of SARS-CoV-2 vaccine	Yes		Yes			
	This figu of SARS-	re comp CoV-2 a	ares important nd Pangolin GD	aspects o CoV.	f transmission	, structure,	and treatment
VOCAB: (w/definition)	Monoclonal antibodies (also known as moAbs or mAbs)- proteins synthesized in a lab that are intended to act like antibodies. Aluminum-containing adjuvant (alum adjuvant)- goes into some vaccines to help increase the effectiveness of the vaccine.						
Cited references to follow up on	 Hou, Y. J., Chiba, S., Leist, S. R., Meganck, R. M., Martinez, D. R., Schäfer, A., Catanzaro, N. J., Vishwaraj Sontake, West, A., Edwards, C. E., Yount, B., Lee, R. E., Gallant, S. C., Zost, S. J., Powers, J., Adams, L., Kong, E. F., Mattocks, M., Tata, A., & Randell, S. H. (2023). Host range, transmissibility and antigenicity of a pangolin coronavirus. <i>Nature Microbiology</i>, <i>8</i>(10), 1820–1833. <u>https://doi.org/10.1038/s41564-023-01476-x</u> Peacock, T. P., Goldhill, D. H., Zhou, J., Baillon, L., Frise, R., Swann, O. C., Kugathasan, R., Penn, R., Brown, J. C., Sanchez-David, R. Y., Braga, L., Williamson, M. K. Hassard, L.A. Staller, F. Hapley, R. Osborn, M. Giacca, M. Davideon, A. D. 						
	M. K., Hassard, J. A., Staller, E., Hanley, B., Osborn, M., Giacca, M., Davidson, A. D., Matthews, D. A., & Barclay, W. S. (2021). The furin cleavage site in the SARS-COV-2 spike protein is required for transmission in ferrets. <i>Nature Microbiology</i> , <i>6</i> (7), 899–909. <u>https://doi.org/10.1038/s41564-021-00908-w</u>						
Follow up Questions	How im SARS-C a way to in tissue	oortant CoV-2? o predic es?	is the polybas What other fa t if a virus cou	sic furin cl ctors influ Ild transn	eavage site in uence the vira hit between sp	n the trans al transmiss pecies with	mission of sion? Is there out testing it

Article #3 Notes: Large-scale informatic analysis to algorithmically identify blood biomarkers of neurological damage

Source Title	Proceedings of the National Academy of Sciences				
Source citation (APA Format)	O'Connell, G. C., Alder, M. L., Smothers, C. G., & Chang, J. H. (2020). Large-scale informatic analysis to algorithmically identify blood biomarkers of neurological damage. <i>Proceedings of the National Academy of Sciences</i> , <i>117</i> (34), 20764–20775. https://doi.org/10.1073/pnas.2007719117				
Original URL	https://www.pnas.org/doi/full/10.1073/pnas.2007719117				
Source type	Research article				
Keywords	Blood biomarkers, Alzheimer's				
#Tags	#introduction				
Summary of key points + notes (include methodology)	The current methods of diagnosing neurological damage are not very accurate. In order to create more accurate tests of neurological damage, the researchers determined three criteria for accurate biomarkers. The criteria were high enrichment in the brain, high abundance in brain tissue, and expressed equally everywhere in the brain. These criteria were tested through algorithmic analysis, single cell sequencing, and blood tests from people with neurological damage. They found hundreds of potential biomarkers and excluded some previously common biomarkers because they didn't meet the requirements. These new biomarkers can be used to develop more accurate tests for a variety of neurological damages and potentially improve the quality of care for patients with neurological damage. Notes: • Current diagnoses of neurological injuries are not very accurate				
	 Disruption of neural cells triggers release of brain-specific proteins out of the cells Criteria for good biomarkers Highly enriched in brain/disease relative to other tissues/diseases Highly abundant in brain tissue/expression of disease Ubiquitous expression in all brain regions Previous neurological biomarkers didn't always meet these criteria, 				

	 so they might not be very accurate Used mRNA expression data to algorithmically evaluate tens of thousands of protein coding genes and give each a biomarker suitability score based on the criteria for good biomarkers Took top ranked genes of the algorithmic analysis and used single cell sequencing data to see which populations expressed these genes Filtered data to contain only genes found in both data sets Took blood from patients with various neurological damage (including AD) and tested for these biomarkers using ELISA Amyloid beta, Tau, and many other common biomarkers were found to be less specific to the brain and therefore not as good of biomarkers as previously thought Identified many new biomarkers that had been previously unknown
Research Question/Problem/ Need	Are there specific biomarkers to identify and differentiate types of neurological damage?
Important Figures	<figure></figure>

	prediction certain types of neurological damage.
VOCAB: (w/definition)	Astrocytes: a subtype of glial cell that makes up most cells in the Central Nervous system. t-distributed stochastic neighbor embedding: a statistical method for visualizing high dimensional data by putting each data point onto a lower dimensional map. Pathophysiology: the functional changes that come with a particular disease. Enzyme-linked immunosorbent assay (ELISA) : a method for detecting and quantifying specific proteins in a complex mixture/sample.
Cited references to follow up on	Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., Friedman, L. F., Galasko, D. R., Jutel, M., Karydas, A., Kaye, J. A., Leszek, J., Miller, B. L., Minthon, L., Quinn, J. F., Rabinovici, G. D., Robinson, W. H., Sabbagh, M. N., So, Y. T., Wyss-Coray, T. (2007). Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. <i>Nature</i> <i>Medicine</i> , <i>13</i> (11), 1359–1362. <u>https://doi.org/10.1038/nm1653</u>
Follow up Questions	Could the same method be used to predict the suitability of specific proteins for diagnosing damages to specific regions of the brain? Are there better biomarkers that could be used instead of Tau and Amyloid beta to better predict and diagnose Alzheimer's disease? What does the lack of specificity of Amyloid beta and Tau mean for the diagnosis of Alzheimer's? What other biomarkers could be used instead of Amyloid beta and Tau? Are Amyloid beta and Tau still useful in helping to detect Alzheimer's because of their specificity to the disease?

Article # 4 Notes: New insights into the genetic etiology of Alzheimer's disease and related dementias

Source Title	Nature genetics
Source citation (APA Format)	Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., & Yaqub, A. (2022). New insights into the genetic etiology of Alzheimer's disease and related dementias. <i>Nature Genetics</i> , <i>54</i> (4). <u>https://doi.org/10.1038/s41588-</u> 022-01024-z
Original URL	https://www.nature.com/articles/s41588-022-01024-z
Source type	Journal article
Keywords	Alzheimers disease, genetics, amyloid beta, tau proteins, pathway analyses, gene prioritization
#Tags	#methods #introduction
Summary of key points + notes (include methodology)	The purpose of this study was to find more genetic markers for Alzheimer's disease and better understand the genetic components of the disease. This study was important because it found more genetic markers for Alzheimer's, which could potentially help improve the current methods of diagnosis and prognosis for this disease. To find these alleles and prove that they were relevant to the development of Alzheimer's, the researchers assessed the frequency of alleles in data from biobanks of people with diagnosed Alzheimer's, proxy Alzheimer's, and without Alzheimer's. Variants not related to APOE, a strong risk factor for Alzheimer's, were assessed to determine if their pathways were relevant to the progression of Alzheimer's. Thirty-one of these genes were still relevant after the pathway analyses and were seen as very important after gene prioritization. This means that the thirty-one of the seventy-five variant alleles that were common among the Alzheimer's and proxy-Alzheimer's patients that proved to be relevant in the pathways of this dementia must be markers of the disease because they are unique and important to Alzheimer's specifically. This answers the question because it proves the existence of new Alzheimer's risk loci and determines which are most important. This could help develop a better test for Alzheimer's and lead us towards preventing and treating Alzheimer's.
Research Question/Problem/ Need	Are there more specific genetic markers for the prediction of Alzheimer's disease?

Article #5 Notes: Antigen-specific age-related memory CD8 T cells induce and track Alzheimer'slike neurodegeneration

Source Title	Proceedings of the National Academy of Sciences				
Source citation (APA Format)	Panwar, A., Rentsendorj, A., Jhun, M., Cohen, R. M., Cordner, R., Gull, N., Pechnick, R. N., Duvall, G., Mardiros, A., Golchian, D., Schubloom, H., Jin, LW., Van Dam, D., Vermeiren, Y., De Reu, H., De Deyn, P. P., Raskatov, J. A., Black, K. L., Irvin, D. K., Wheeler, C. J. (2024). Antigen-specific age-related memory CD8 T cells induce and track alzheimer's-like neurodegeneration. <i>Proceedings of the National Academy of Sciences</i> , <i>121</i> (29). <u>https://doi.org/10.1073/pnas.2401420121</u>				
Original URL	https://www.pnas.org/doi/10.1073/pnas.2401420121				
Source type	Research Article				
Keywords	Alzheimer's disease, neurodegeneration				
#Tags	#introduction #methods				
Summary of key points + notes (include methodology)	 This study aimed to determine if antigen-specific age-related memory CD8 T cells are upstream causes of Alzheimer's, and therefore good biomarkers. To test this, they used homeostatically induced T cell mice to model the effect of aging CD8 T cells. It was found that these aging T cells induced AD-like neurodegeneration, which Amyloid Beta and Tau could never manage by themselves. Two proteins called Perforin and Interferon gamma play roles in how the T cells cause neurodegeneration. Perforin appeared to have a greater impact on the beginning stages of Alzheimer's, while interferon gamma appeared to affect the later stages of AD. In the absence of Perforin, Alzheimer's-like neurodegeneration did not develop. Age-related CD8 T cells were found to be associated with the current most specific established AD biomarkers. These cells may be a useful, upstream factor of Amyloid beta and tau are not best choices of biomarker for AD Mouse model translated well to humans Findings currently supported in humans, but require more testing Perforin is essential to the function of CD8 T cells in inducing Alzheimer's Interferon Gamma would be a good biomarker for the progression of neurodegeneration 				

	 Antigen-specific age-related memory CD8 T cells cause amyloid plaques and neurofibrillary tangles
Research Question/Problem/ Need	Do antigen-specific age-related memory CD8 T cells influence the pathogenesis and progression of Alzheimer's?
Important Figures	A uiend glound dh A north of the second of
	$ \begin{bmatrix} \mathbf{E} & \mathbf{F} & \mathbf{F} & \mathbf{round} & \mathbf{round} & \mathbf{hollow} \\ \hline \mathbf{F} & F$
VOCAB: (w/definition)	Epitope: the spot where the antibody attaches itself to the antigen Homeostatically: relating to the process of homeostasis
Cited references to follow up on	 Musiek, E. S., & Bennett, D. A. (2021). Aducanumab and the "post-amyloid" ERA of Alzheimer research? <i>Neuron</i>, <i>109</i>(19), 3045–3047. https://doi.org/10.1016/j.neuron.2021.09.007 Gate, D., Saligrama, N., Leventhal, O., Yang, A. C., Unger, M. S., Middeldorp, J., Chen, K., Lehallier, B., Channappa, D., De Los Santos, M. B., McBride, A., Pluvinage, J., Elahi, F., Tam, G. KY., Kim, Y., Greicius, M., Wagner, A. D., Aigner, L., Galasko, D. R., Wyss-Coray, T. (2020). Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. <i>Nature</i>, <i>577</i>(7790), 399–404. https://doi.org/10.1038/s41586-019-1895-7

Is there a substance that could block the effect of Perforins? What are the
characteristics of antigen-specific age-related memory CD8 T cells? And how do
these specific characteristics affect the pathogenesis and progression of
Alzheimer's?
ls cł tł

Article #6 Notes: Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration

Source Title	PNAS				
Source citation (APA Format)	Ouyang, W., & Han, J. (2019). Universal amplification-free molecular diagnostics by billion-fold hierarchical nanofluidic concentration. <i>Proceedings of the National</i> <i>Academy of Sciences</i> , <i>116</i> (33), 16240–16249. <u>https://doi.org/10.1073/pnas.1904513116</u>				
Original URL	https://www.pnas.org/doi/full/10.1073/pnas.1904513116				
Source type	Research article				
Keywords	Biomarkers, diagnostics				
#Tags	#introduction #methods				
Summary of key points + notes (include methodology)	There was a lack of methods to measure biomarkers with lower abundances, and many techniques for measuring biomarkers were time consuming and complicated. This study was to find more simple, accurate method of measuring biomarkers with lower abundances in the blood. A hierarchical nanofluidic molecular enrichment system (HOLMES) was created to detect these low- abundance biomolecules reliably, efficiently, and accurately. They used vertically stacked parallel microchannels with perpendicular nanochannels to get the biomolecules trapped, so that they would become concentrated. Selective enrichment allows this technique to eliminate the interfering biomolecules. This technique could help detect biomarkers and widen the scope of biomarkers that can be used. Notes: • hierarchical nanofluidic molecular enrichment system (HOLMES) o massively paralleled and hierarchically cascaded nanofluidic concentrators				
	 billion-fold enrichment (nucleic acids & proteins) in 30 min detects attomolar nucleic acids in 35 min many biomarkers have subfemtomolar concentrations, current methods couldn't detect this low of a concentration detects below concentrations detectible by ELISA faster than ELISA lots of restrictions on previous techniques that made them impractical for 				

Research Question/Problem/	 clinical diagnosis universally functional in clinical settings HOLMES is simple and cost effective Vertically stacked massively parallel microchannels, the number of which gets less throughout In each stage, perpendicular nanochannels bridge them and buffer side channels at the bottom Nanochannels made of cation-selective membrane enriches positively charged biomolecules Eventually, biomolecules get trapped, and concentrations of the biomolecules grow, process continues through each stage Reconcentration steps lower detection limits Tested using ssDNA and BSA, shows success on both nucleic acids and proteins More accurate than qPCR due to lack of amplification Selective enrichment of targets and depletion of interfering biomolecules fluorescently labeled complementary peptide nucleic acid (PNA) probe and neutral DNA used a high-mobility capture antibody (Ab) with fluorescently labeled ssDNAs generic and versatile tool for diagnostic applications
Need Important Figures	without amplification?

	Α	Device		Number of ch	annels × widt	h	
		name	1 st stage	2 nd stage	3 rd stage	4 th stage	- Schematic
		640-plex	64× 200 μm	4× 200 μm	1× 20 μm		$\begin{array}{c} \mathbf{c}_{0} \\ 0.2 \text{ mL} \end{array} \rightarrow \begin{array}{c} 10^{4-2} \\ 10 \end{array} \rightarrow \begin{array}{c} 10^{7} \mathbf{x} \mathbf{c}_{0} \\ 10 \text{ pL} \end{array}$
		3200-plex	320× 200 μm	4× 200 μm	1× 20 µm		$\begin{array}{c} \mathbf{C}_{0} \\ 1 \text{ mL} \end{array} \rightarrow \begin{array}{c} \mathbf{10^{4-5}} \end{array} \qquad 80 \rightarrow \begin{array}{c} 40 \end{array} \rightarrow \begin{array}{c} \mathbf{10^{8} x c_{0}} \\ 10 \text{ pL} \end{array}$
		38400- plex (3D)	12×320× 200 μm	160× 200 μm	4× 200 μm	1× 20 μm	$\begin{array}{c} \mathbf{C}_{0} \\ 10 \text{ mL} \end{array} \xrightarrow{10^{4-5}} 24 \xrightarrow{40} 40 \xrightarrow{10^{9} \times \mathbf{C}_{0}} \\ 10 \text{ pL} \end{array}$
	B	1 st stage 2 ************************************	5 cm 2nd 8.3rd 2nd 4.3rd 2nd 8.3rd 2nd 8.3rd 2nd 8.3rd 2nd 8.3rd 2nd 8.3rd 2nd 8.3rd 2nd 8.3rd 2nd 8.3rd 2		1 st stage	2nd 3rd8.4th	5 cm 5 cm 5 cm 5 cm 5 cm
	Th HC	is diagra	am shov	ws the d	ifferent s	sizes of	device and pictures of the actual
VOCAB: (w/definition)	Att Tar flui	:omolar: ngential: id drag f	concent along a orce: the	ration of tangent e resistan	10 ⁻¹⁸ mo	le per lit	er d
Cited references to follow up on	Yar Use Inf <u>8</u>	ng, S., & es, limita ectious [Rothmai ations, ar Diseases,	n, R. E. (2 nd future , 4(6), 337	:004). PC applicat 7–348. <u>h1</u>	R-based ions in a ttps://do	diagnostics for infectious diseases: cute-care settings. <i>The Lancet</i> <u>pi.org/10.1016/s1473-3099(04)01044-</u>
Follow up Questions	Wł thr	nat are th ough th	he conce is test? (entrations Could this	s of biom s test be r	arkers fo made fas	or Alzheimer's? Are they detectable ster or more specific?

Article #7 Notes: Spatial cell type composition in normal and Alzheimers human brains is revealed using integrated mouse and human single cell RNA sequencing

Source Title	Nature scientific reports			
Source citation (APA Format)	Johnson, T. S., Xiang, S., Helm, B. R., Abrams, Z. B., Neidecker, P., Machiraju, R., Zhang, Y., Huang, K., & Zhang, J. (2020). Spatial Cell type composition in normal and Alzheimers human brains is revealed using integrated mouse and human single cell RNA sequencing. <i>Nature Scientific Reports</i> , <i>10</i> (1). <u>https://doi.org/10.1038/s41598-020-74917-w</u> .			
Original URL	https://www.nature.com/articles/s41598-020-74917-w			
Source type	Journal article			
Keywords	Alzheimer's, cells			
#Tags	#introduction #methods			
Summary of key points + notes (include methodology)	 Due to a lack of human brains, these researchers wanted to find a way to make accurate models of the cell types in different regions of the brain using a model organism. They took samples from mice brains and used single cell RNA sequencing (scRNA-seq) to separate cell types in each region of the brain based on cell type-specific gene expression. There were significant differences between mice and human brains, but overall, the mice samples were very accurate to previously known information on the cell types of each brain region. This accuracy was even translated to predicting Alzheimer's with differences in cell type ratios of Interneurons, S1 Pyramidal cells, CA1 Pyramidal cells, and Microglial cells. Notes: lack of human brains for research structural, anatomic, and cellular differences in brain cells affects brain development, health, and degeneration spatially explicit functionality used single cell RNA sequencing (scRNA-seq) to classify and characterize brain cell type-specific gene expression using mice, decent differences between mouse and human brain, but cell function and anatomical structure are conserved integrative transcriptomic feature selection 			

	 9 major neuronal cell types/subtypes: interneuron, S1 Pyramidal, CA1 pyramidal, oligodendrocytes, microglia, astrocytes, endothelial, ependymal, and mural The mouse model translated well to humans in both normal and Alzheimer's brain cell type measurements Spatial location using nuclei doesn't work, but neural connectivity could be useful in determining cell type distribution due to long axons of some neuronal cells. Used cell size correlation to increase accuracy General cell type RNA expression profiles are consistent across mouse and human samples AD causes microglial cells to proliferate and Interneurons, S1 Pyramidal cells, and CA1 Pyramidal cells to die Used the Braak stage scores (BBS), Amyloid plaque scale (Plaque means), and Clinical dementia rating scale (CDR) to measure the clinical traits of Alzheimer's for comparison to find the correlations Interneurons, S1 Pyramidal cells, and CA1 Pyramidal cells are negatively correlated with AD clinical traits Microglia are positively correlated with AD clinical traits
Research Question/Problem/ Need	How are the various types of neurons distributed throughout the brain?
Important Figures	A-1 Tissue Sequence sample Separate mRNA profile into Cell type A-2 Tissue Disociate sample E.e.g. flow cytometry) and quantify mRNAs Cell type A-3 Tissue Disociate sample Sequence cells into subtypes Sequence subtypes Cell type A-3 Tissue Disociate sample Sequence and quantify mRNAs Cell type B Cells Sequence and quantify mRNAs Cell type B Sequence and quantify mRNAs Cell type Cell type B Sequence and quantify mRNAs Cell type Sequence and quantify mRNAs Cell type B Sequence and quantify mRNAs Sequence and quantify mRNAs Cell type Sequence cells Sequence cells Sequence cells Sequence cells Sequence cells<

	barrier, promoting synapse formation, and clearing excess neurotransmitters Ependymal neurons: Mural cells: types of mural cells called pericytes work with endothelial cells and astrocytes to make up the Blood-brain barrier Deconvolution: the process of mathematically separating data into the components that make it up to clarify it Pearson correlation coefficient (PCC): a common way to measure a correlation between two variables that gives a number between -1 and 1. This measures the strength and direction of the correlation of these variables. If there is not a correlation, the value is 0.
Cited references to follow up on	Rajendran, L., & Paolicelli, R. C. (2018). Microglia-Mediated Synapse Loss in Alzheimer's Disease. <i>The Journal of Neuroscience</i> , <i>38</i> (12), 2911–2919. <u>https://doi.org/10.1523/jneurosci.1136-17.2017</u>
Follow up Questions	Can cellular heterogeneity contribute to testing for neurological injury to a specific area? How do the differences between mice and human brains affect the progression of diseases? What other model organisms be used to model Alzheimer's effect on brain cells? Do these mice have the same biomarkers of Alzheimer's as in humans? Are there specific biomarkers for the loss of Interneurons, S1 Pyramidal cells, and CA1 Pyramidal cells or the gain of Microglia?

Article #8 Notes: Correlation of Presynaptic and Postsynaptic Proteins with Pathology in Alzheimer's Disease

Source Title	International Journal of Molecular Sciences							
Source citation (APA Format)	Serrano, G. E., Walker, J., Nelson, C., Glass, M., Arce, R., Intorcia, A., Cline, M. P., Nabaty, N., Acuña, A., Huppert Steed, A., Sue, L. I., Belden, C., Choudhury, P., Reiman, E., Atri, A., & Beach, T. G. (2024). Correlation of presynaptic and postsynaptic proteins with pathology in alzheimer's disease. <i>International Journal</i> <i>of Molecular Sciences</i> , <i>25</i> (6), 3130. <u>https://doi.org/10.3390/ijms25063130</u>							
Original URL	https://www.mdpi.com/1422-0067/25/6/3130							
Source type	Research Article							
Keywords	Alzheimer's, SNAP-25							
#Tags	#introduction							
Summary of key points + notes (include methodology)	 Synapse dysfunction plays a major role in many neurodegenerative diseases. The proteins synaptosome-associated protein 25 (SNAP-25) and postsynaptic density protein 95 (PSD95) are vital the functioning of synapses, so this study aimed to study the levels of these proteins in patients with Alzheimer's, mild cognitive impairments, and no cognitive impairments to test the correlations of these proteins to AD. They found that the expressions of these proteins was lower in patients with Alzheimer's, meaning that there was a statistically significant correlation between these proteins and AD. Notes: Studies have estimated that the major brain weight loss in AD is due to synapse and axonal loss, not neuronal loss Studied presynaptic protein synaptosome-associated protein 25 (SNAP-25) & postsynaptic protein postsynaptic density protein 95 (PSD95) Used immunochemical assays to estimate expressions of SNAP-25 and PSD95 relative to each other SNAP-25 and PSD95 reductions in the cingulate, frontal and visual cortices of females compared to the same regions in males 							

	 of patients with Alzheimer's Can't differentiate synaptic loss vs synaptic protein expression loss Synaptic loss most likely starts long before clinical symptoms, and may even be a normal aging process 								
Research Question/Problem/ Need	Are the expressions of presynaptic and postsynaptic proteins, specifically SNAP-25 and PSD95 correlated with the pathology of Alzheimer's disease?								
Important Figures	SNAP25ug MCI MCI MCI MCI MCI MCI MCI MCI								
	U-LP CU-HP MCI ADD n=33 n=15 n=18 n=35 n=15 n=18 n								
	These graphs show the expression levels of SNAP-25 and PSD95 across the different testing groups, including mildly cognitively impaired, AD patients, and two groups of cognitively unimpaired patients (separated by high and low levels of AD pathology).								

VOCAB: (w/definition)Postsynaptic density protein 95 to synaptic density protein 95 (second strong)Postsynaptic density protein 95 (second		SNAP25	protein p	er brain re		PSD95 protein per brain region						
VOCAB: (w/definition)Postsynaptic density protein 95 (PSDP5): a postsynaptic protein that has a large region 1242 1000 1267 1267 1068 region 1244 1000 1267 1068 region 1246 1067 1068 region 1246 106		Oradistars	Odde Patio	OFF CI	80005	1	95% CI	*p<0.05				
Sec 188 277,448 0.16 Model 0.80 0.80,207 0.001 Model 0.80 0.80,207 0.001 Are 0.85 0.001 0.001 Are 0.85 0.001 0.001 Region 1.65 0.001,100 0.001 0.001 Region 1.65 0.001,100 0.001 0.001 0.001 Region 1.65 0.001,100 0.001 0.001 0.001 0.001 Region 1.00 0.001,100 0.001 0.001 0.001 0.001 0.001 Region 1.00 0.001,100 0.001		Equation SEG	Odds Ratio	93% CI	* 0.000	1	Sex Are	2.018	0.850, 4.790	0.111		
Image: constraint of the brain and their correlations.VOCAB: (w/definition)Spire-constraint of the sample in 3 dimensions postmortem interval (PMU): the amount of time that has passed since the death of a person. That Phases: a method for characterizing the pattern of amyloid plaque distributions.Cited references to follow up on This Si/doi.org/10.1016/j.neuron.2014.05.004Spire-constraint of the sample in 3 dimensions postmortem interval (PWI): the amount of time that has passed since the death of a person. That Phases: a method for characterizing the pattern of amyloid plaque distributions.Cited references to follow up on 		Sex	1.833	0.747, 4.498	0.186]	MMSE Equation SEG	0.913	0.850, 0.981	*0.013		
VOCAB: (w/definition)Postsynaptic density process to follow up on a person The local construction for characterizing the pattern of anyloid Beta a person 		Age	0.935	0.877, 0.996	*0.038	-	Sex	2.183	0.943, 5.051	0.068		
JosJo		Equation SFG	0.895	0.820, 0.970	*0.001	1	Tangles	1.139	1.035, 1.254	*0.008		
VOCAB: (w/definition)Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a guantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person That Phase: a method for characterizing the pattern of amyloid plaque distributionsVOCAB: (w/definition)Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic platicity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a person That Phase: a method for characterizing the pattern of amyloid plaque distributionsCited references to follow up on This is due to synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Cited references to follow up on Late Synapse in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004		Sex	2.041	0.864, 4.820	0.104	1	Equation SFG Sex	2.165	0.940, 4.986	*0.020		
VOCAB: (w/definition)Postsynaptic density protein 95 (PSD95): a postsynaptic protein hat has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions 		Age	0.955	0.906, 1.006	0.083		Age	0.986	0.940, 1.035	0.581		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSDS): a postsynaptic protein that has a large role in synaptic plasticity and strength VOCAB: (w/definition) Postsynaptic density protein 95 (PSDS): a postsynaptic protein that has a large role in synaptic plasticity and strength VICCAB: (w/definition) Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Cited references to follow up on Tables, M., Brock, M., Rubel, C., Czerkowicz, J., Carham, D., & Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kirisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mende, M., Brock, M., Rubel, C., Czerkowicz, J., Carham, D., & Amyloid St.		Tangles	1.165	1.054, 1.287	*0.003	-	Equation ENT	1.093	1.020, 1.170	*0.001		
Image: 100 105<		Sex Sex	1.995	0.856, 4.653	0.110	1	Sex Age	2.674	1.115, 6.410	*0.028 0.922		
The set of the brain and their correlations.VOCAB: (w/definition)Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synappes in Alzheimer's Disease. Neuron, $82(4)$, 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Kited references to follow up on Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synappes in Alzheimer's Disease. Neuron, $82(4)$, 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Kitesize, and the intersection of Amyloid Beta and Tau at Synappes in Alzheimer's Disease. Neuron, $82(4)$, 756–771. 		Age	0.943	0.895, 0.994	*0.029	1	MMSE Equation ENT	0.906	0.847, 0.970	*0.005		
Image: 100Image: 100<		Plaques	1.100	1.025, 1.181	*0.008]	Sex	2.292	1.279, 6.708	*0.011		
VOCAB: (w/definition) Possynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Str		Equation ENT			*0.046	-	Age Tangles	0.993	0.946, 1.042	0.766		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a QU21, DU21, DU2		Sex	2.033	0.882, 4.688	0.096	-	Equation ENT	2 607	1 369 6 530	*0.028		
VOCAB: (w/definition)Postsynaptic plasticity and sterength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quartitative parameter of the sampling and counting of a 2D material to obtain an estimate of a quartitative parameter of the sampling and counting of a 2D material to obtain an estimate of a quartitative parameter of the sampling ind counting of a 2D material to obtain an estimate of a quartitative parameter of the sampling ind counting of a 2D material to obtain an estimate of a quartitative parameter of the sampling ind counting of a 2D material to obtain an estimate of 		MMSE	0.949	0.894.1.007	0.081	1	Age	0.985	0.939, 1.033	0.526		
VOCAB: (w/definition) Postsynaptic plasticity and strength VOCAB: (w/definition) Postsynaptic plasticity and strength Voccab: (w/definition) Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Cited references to follow up on Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022).		Equation CING			*0.009	1	Plaques Equation HIP	1.055	0.986, 1.129	*0.000		
Age10020.947.1090.051MMLE0.9170.957.09420.001Sec0.9920.945.10410.001Sec0.9920.945.10410.001Sec0.9920.945.10410.001Sec0.9920.945.10410.001Sec0.9920.945.10410.001Sec0.9920.945.10410.001Sec0.9920.945.10410.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.9920.957.3070.001Sec0.992.1280.002This chart shows the expressions of both SNAP-25 and PSD95 in the different parts of the brain and their correlations.VOCAB: (w/definition)Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strengthStereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions 		Sex	2.007	0.854, 4.721	0.110	1	Sex	3.962	1.532, 10.251	*0.005		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmorter interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Cited references to follow up on This Phase and the synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Ruck, R. M., Ruck, C., Czerkowicz, J., Graham, D. & Arnold, S. E. (2022).		Age	1.002	0.947, 1.059	0.956	1	MMSE	0.873	0.794, 0.90	*0.005		
VOCAB: (w/definition) Possynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and their correlations. Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and their correlations. Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivišákk, P., Carlyle, B. C., Sweeney, T., Quin, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic orotein sPSD-95. SNAP-25. and		MMSE	0.917	0.857, 0.982	*0.013	-	Equation HIP Sex	4.084	1.652, 10.098	*0.000		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Cited references to follow up on Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Spres-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivišákk, P., Carlyle, B. C., Sweeney, T., Quin, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic oroteins PSD-95. SNAP-25. and		Equation CING	2 130	0.934 4.900	-0.020	-	Age	0.970	0.920, 1.022	0.247		
VOCAB: (w/definition)Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions 		Age	0.992	0.945, 1.041	0.743	1	Tangles Equation HIP	1.168	1.051, 1.298	*0.004		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength VoccAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thale have: a method for characterizing the pattern of amyloid plaque distributions Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic protein Spires-Jones, Tara L. (2022). Increased levels of the synaptic protein Spires-Spires, and		Tangles	1.124	1.024, 1.235	*0.014	1	Sex	3.663	1.543, 8.697	*0.003		
Sex 1.469 0.59, 3.873 0.411 MASE 0.867, 3.873 0.022 MASE 0.871 0.75, 0.954 0.000 Sex 1.781 0.722, 4.302 0.000 Sex 1.225 1.099, 1.366 0.000 Tangles 1.225 1.099, 1.366 0.000 Sex 0.380, 0.000 0.000 1.000, 0.000 Tangles 1.225 1.099, 1.366 0.000 Sex 0.380, 0.000, 0.000 1.000, 0.000 1.000, 0.000 Sex 0.380, 0.000, 0.000 1.000, 0.000 1.000, 0.000, 0.000 Sex 0.127, 4.209 0.212, 0.000 1.000, 0.000, 0.000 This chart shows the expressions of both SNAP-25 and PSD95 in the different parts of the brain and their correlations. VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Cited references to follow up on		Equation A17			*0.000	1	Plaques	1.067	0.994, 1.146	*0.071		
Age: 0.924 0.925 0.926 0.021 Maxt 0.927 0.985 0.001 Equation A17 1.78 0.732, 4.33 0.001 Age: 0.947 0.985 0.001 Age: 0.947 0.985 0.001 Age: 0.947 0.901 0.901 Age: 0.941 0.921 0.941 0.921 Age: 0.941 0.921 0.911 0.921 0.921 Age: 0.921 <th></th> <th>Sex</th> <th>1.469</th> <th>0.587, 3.673</th> <th>0.411</th> <th>1</th> <th>Equation CING Sex</th> <th>1.160</th> <th>0.503, 2.678</th> <th>*0.053</th>		Sex	1.469	0.587, 3.673	0.411	1	Equation CING Sex	1.160	0.503, 2.678	*0.053		
VOCAB: (w/definition) Output Output <t< th=""><th></th><th>Age</th><th>0.926</th><th>0.866, 0.989</th><th>*0.022</th><th>-</th><th>Age</th><th>0.996</th><th>0.943, 1.052</th><th>0.892</th></t<>		Age	0.926	0.866, 0.989	*0.022	-	Age	0.996	0.943, 1.052	0.892		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Cited references to follow up on Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic protein process.		Fountion A17	0.8/1	0.795, 0.954	*0.003	-	Equation A17	0.927	0.871, 0.988	* 0.002		
Image: 0.947 0.959 1.000 0.002 Image: 1.225 1.099, 1.366 0.002 0.001 0.001 Sex 1.749 0.727, 4.20 0.001		Sex	1.781	0.732, 4.332	0.203	1	Sex	2.941	1.236, 6.999	*0.015		
Images 1225 1099 1.364 0000 Images 1240 0.727,4.200 0212 Age 0.931 0.860,0854 0.032 Images 1144 1062,1233 0000 Images 1184 1082,1233 0000 Images Images 1284 1082,1233 Images Images Images 1000 1000,1200 Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alz		Age	0.947	0.896, 1.000	0.052	1	MMSE	0.923	0.865, 0.985	*0.016		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Cited references to follow up on Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic protein SPD-95. SNAP-25. and		Tangles	1.225	1.099, 1.366	*0.000	1	Equation A17	3.033	1.306, 7.045	*0.005		
Sex 1749 0.277,4208 0.212 Age 0.991 1042,1238 0.001 Plaques 1144 1062,1238 0.001 This chart shows the expressions of both SNAP-25 and PSD95 in the different parts of the brain and their correlations. 1062,1238 1006,1167 VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Cited references to follow up on Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic proteins PSD-95. SNAP-25. and		Equation A17			*0.000	-	Age	0.998	0.950, 1.048	0.929		
Image: 1144 1042,1233 00302 Image: 1042 1042 00302 Image: 1144 1042,1233 00302 Image: 1042 1040 00302 Image: 1144 10402,1233 00302 Image: 1042 1040 00302 Image: 1144 1042,1233 00302 Image: 1042 1040 00302 Image: 1144 1042,1233 00302 Image: 1042 1040 00302 Image: 1144 1040 1040 1040 1040 1040 1040 Image: 1144 1040 1040 1040 1040 1040 1040 1040 Image: 1144 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040		Sex	1.749	0.727, 4.209	0.212	-	Equation A17	2.464	1.023, 1.235	*0.006		
VOCAB: (w/definition) Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions Cited references to follow up on Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic proteins PSD-95. SNAP-25. and		Plaques	1.144	1.062, 1.233	*0.000	1	Sex Age	3.042	1.310, 7.064	*0.010		
VOCAB: (w/definition)Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributionsCited references to follow up onSpires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. 						-	Plaques	1.089	1.016, 1.167	*0.016		
VOCAB: (w/definition)Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributionsCited references to follow up onSpires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic proteins PSD-95. SNAP-25. and		This chart sh of the brain	ows the and thei	expressio r correlati	ns of k ons.	ooth SNAP-:	25 and PSD	95 in th	ne differer	nt parts		
Cited references to follow up onSpires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic proteins PSD-95. SNAP-25. and	VOCAB: (w/definition)	 Postsynaptic density protein 95 (PSD95): a postsynaptic protein that has a large role in synaptic plasticity and strength Stereological: the sampling and counting of a 2D material to obtain an estimate of a quantitative parameter of the sample in 3 dimensions postmortem interval (PMI): the amount of time that has passed since the death of a person Thal Phase: a method for characterizing the pattern of amyloid plaque distributions 										
nourographin in the corebrospinal fluid of nationts with Alzheimer's	Cited references to follow up on	 Spires-Jones, Tara L., & Hyman, Bradley T. (2014). The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. <i>Neuron, 82</i>(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004 Kivisäkk, P., Carlyle, B. C., Sweeney, T., Quinn, J. P., Ramirez, C. E., Trombetta, B. A., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. E. (2022). Increased levels of the synaptic proteins PSD-95, SNAP-25, and prove provide in the second provide of the synaptic proteins Pice of the synaptic pice of										

	disease. <i>Alzheimer's Research & Therapy</i> , 14(1). <u>https://doi.org/10.1186/s13195-</u> 022-01002-x
Follow up Questions	What stops the AD pathology from causing Alzheimer's in some people? What differences in the male and female brains cause the differences in synaptic protein levels as they age? Could these proteins be used as biomarkers for the disease?

Article #9 Notes: *Dysfunction of the SNARE complex in neurological and psychiatric disorders*

Source Title	Pharmacological Research						
Source citation (APA Format)	Chen, F., Chen, H., Chen, Y., Wei, W., Sun, Y., Zhang, L., Cui, L., & Wang, Y. (2021). Dysfunction of the SNARE complex in neurological and psychiatric disorders. <i>Pharmacological Research</i> , <i>165</i> , 105469. <u>https://doi.org/10.1016/j.phrs.2021.105469</u>						
Original URL	https://www.sciencedirect.com/science/article/pii/S1043661821000530						
Source type	Review Article						
Keywords	SNARE, neurodegenerative diseases, neuropsychiatric diseases						
#Tags	#introduction						
Summary of key points + notes (include methodology)	 Synapses are vital to the communication between neurons in the nervous system. When the SNARE complex, which is vital to the function of synaptic vesicle exocytosis, dysfunctions, it can contribute to many neurodegenerative diseases. SNARE has three main proteins, which are Synaptobrevin2 (AKA vesicle-associated membrane protein-2 (VAMP-2)), Syntaxin-1, and synaptosome-associated protein 25 (SNAP-25). In Alzheimer's, altered expression levels of SNARE proteins and outside factors like Amyloid beta contribute to the decreased functionality of the synapses. Alleles that are risk factors for Alzheimer's, such as ApoE4 often have an effect on the function of the SNARE complex. SNARE dysfunction is a common thread between lots of neurodegenerative diseases, but treatment and detection could be tricky due to the varying expressions across patients. Notes: The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex is a presynaptic vesicles Presynaptic dysfunction may be an early sign of neurodegeneration Specific proteins in the SNARE complex are often found to have altered expressions Major three SNARE proteins are Synaptobrevin2 (AKA vesicle-associated membrane protein-2 (VAMP-2)), Syntaxin-1, and synaptosome-associated protein 25 (SNAP-25) 						
	 Syntaxin-1 and SNAF-25 are t-SNAREs round on the membrane, while VAMP-2 is a v-SNARE on the vesicle SNARE alone can mediate exocytosis of the synaptic vesicles, btu 						

	 Amyloid beta oligomers inhibit SNARE function by binding to the Syntaxin 1 motif, inhibiting fusion step Amyloid beta monomers don't show the same effect Amyloid beta oligomers could use steric hinderance to inhibit the "zippering" of the SNARE proteins into the cis-SNARE complex Amyloid beta has varied effects on synaptic function, based on concentration, exposure time, and what type of Amyloid beta Abnormalities in SNARE are thought to be related to AD pathology and could be a good biomarker, especially SNAP-25 ApoE4 is a major genetic risk factor for AD, ApoE3 is neutral and ApoE2 protects against AD ApoE genes alleles differentially affect the expressions of VAMP-2 and syntaxin-1 proteins Doesn't account for all factors because they are not all known, and doesn't account for temporal and spatial factors SNARE dysfunction is a common thread between lots of neurodegenerative diseases Treatment and detection could be tricky due to the varying expressions across patients 									
Research Question/Problem/ Need	What is the role of the SNARE complex in the pathologies of neurodegenerative, neuropsychiatric, and neurodevelopmental diseases?									
Important Figures	a Docking b C VAMP-2 SV Munc18 Complexin Priming stage 1 Priming stage 2 Syntaxin-1 SV Munc13 Complexin Grave Syntaxin-1 SNAP-25 Munc13 Grave Grave Munc13 Grave Synaptic cleft Munc13 f Grave Synaptic cleft Synaptic cleft Synaptic cleft Synaptic cleft Synaptic cleft Synaptic cleft Disassembly complex NSF Synaptic cleft Fusion completion Fusion-pore opening NSF This diagram shows the normal function of the SNARE complex and its associated proteins in synaptic vesicle exocytosis. SNARE complex and its associated proteins in synaptic vesicle exocytosis.									

	abunder Aβ monomer conditionynaptic vesicleynaptic vesicleunder Aβ oligomeric conditionpostsynapsepresynaptic membraneunder Aβ oligomeric conditionynaptic vesicleAβ monomerpresynaptic membranesynaptic vesicleAβ monomerynaptic membranewmaptic vesicleAβ monomerynaptic membranewmaptic vesicleAβ monomerynaptic membranewmaptic vesicleAβ monomerynaptic membranewmaptic vesicleNaptic vesicleAβ binding regionwmaptic vesicleNaptic vesicleNaptic vesiclewmaptic vesicleNaptic vesicleNaptic vesiclevesicleNaptic vesicleNaptic vesiclevesicleNaptic vesicleNaptic vesiclevesicleNaptic vesicleNaptic vesiclevesicleNaptic vesicleNaptic vesicle
VOCAB: (w/definition)	Steric hindrance: the slowing of a reaction due to the structure of a molecule Case-control association studies: a study that detects a potential association between a genetic marker and a trait, such as a disease
Cited references to follow up on	Clarke, M. T. M., Brinkmalm, A., Foiani, M. S., Woollacott, I. O. C., Heller, C., Heslegrave, A., Keshavan, A., Fox, N. C., Schott, J. M., Warren, J. D., Blennow, K., Zetterberg, H., & Rohrer, J. D. (2019). CSF synaptic protein concentrations are raised in those with atypical Alzheimer's disease but not frontotemporal dementia. <i>Alzheimer's Research & Therapy</i> , <i>11</i> (1). <u>https://doi.org/10.1186/s13195-019-0564-2</u> Anindit Chhibber, & Zhao, L. (2017). ERβ and ApoE isoforms interact to regulate BDNF–5-HT2A signaling and synaptic function in the female brain. <i>Alzheimer's Research & Therapy</i> , <i>9</i> (1). <u>https://doi.org/10.1186/s13195-017-0305-3</u>
Follow up Questions	Could changes in cholesterol levels cause neurodegeneration? How do Amyloid Beta oligomers and monomers have different effects on the functioning of the SNARE complex? How do other components of AD contribute to the functions and effects of SNARE proteins? Could protective mutations, such as ApoE2, counteract the effects of other genetic factors that reduce the function of the SNARE complex?

Article #10 Notes: Synaptic biomarkers in the cerebrospinal fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer's disease and frontotemporal dementia

Source Title	Alzheimer's Research & Therapy							
Source citation (APA Format)	Das, S., Goossens, J., Jacobs, D., Dewit, N., Pijenburg, Y., In 't Veld, S., Teunissen, C. E., & Vanmechelen, E. (2023). Synaptic biomarkers in the cerebrospinal fluid associate differentially with classical neuronal biomarkers in patients with Alzheimer's disease and frontotemporal dementia. <i>Alzheimer's Research &</i> <i>Therapy</i> , <i>15</i> (1). <u>https://doi.org/10.1186/s13195-023-01212-x</u>							
Original URL	https://link.springer.com/article/10.1186/s13195-023-01212-x#Sec1							
Source type	Research Article							
Keywords	Alzheimer's, Biomarkers, synapses							
#Tags	#introduction							
Summary of key points + notes (include methodology)	 Synaptic proteins are associated with neurodegeneration in many diseases, including dementia. The main synaptic proteins in this study were SNAP-25, VAMP-2, Neurogranin (Ng), neuronal pentraxin-2 (NPTX2), and glutamate receptor-4 (GluR4). They found that SNAP-25 was best for differentiation of Alzheimer's from the other groups, but that it was not specific to the disease. They proved that synaptic proteins in the brain are differentially involved in the pathology of diseases, and would be best for a potential biomarker for AD. Notes: Synaptic proteins are often associated with Tau and pTau levels in Alzheimer's Synaptic biomarkers were not correlated with CSF neurofilament light, which means that broad spectrum neurodegeneration is not correlated with synaptic dysfunction Used ELISA for biomarker detection Core neuronal biomarkers in CSF, Tau, PTau, and NfL were able to differentiate between all groups (AD, FTD, & SCD) significantly SNAP-25 was best at differentiating between AD and subjective cognitive decline (SCD) patients, and the only protein that could differentiate between AD and FTD 							

	 Strength of correlations found in AD and FTD were reduced from the SCD group Synaptic protein levels are altered in different disease states SNAP-25, VAMP-2 and Ng were found to have strong correlations to each other Synaptic proteins in the brain are differentially involved in the pathology of diseases
Research Question/Problem/ Need	How are biomarkers of synaptic dysfunction and neurodegeneration related?
Important Figures	Pre Synapse Synaptic Cleft NTIX Post Synapse This diagram shows the locations of each protein described in the study.

						-1	-0.5	0	0.5	1	
	MMSE	Αβ42	Tau	PTau	NfL	SNAP25	VAMP2	Ng	NPTX2	GluR4	
	Cohort	0.47***	-0.66***	-0.65***	-0.50***	-0.57***	-0.48***	-0.52***	0.22	-0.06	
	AD	0.31	-0.13	-0.09	-0.37	0.09	0.06	0.20	0.55*	-0.03	
	FTD	0.05	-0.37	-0.46*	-0.12	-0.24	-0.40	-0.44	-0.22	0.09	
	SCD	-0.08	-0.18	-0.38	0.08	-0.13	-0.24	-0.39	-0.08	-0.19	
	This ch levels c Tabl From: neuro	art show of the pa e 3 Diag Synaptic nal biom	ws the c atients in gnostic v biomarke arkers in p	orrelation each c alue of t rs in the ce atients wi	ons of ea ohort. the CSF erebrospin th Alzheir	ach biom biomark nal fluid as: ner's disea	narker w ers sociate dif se and fro	ith the c ferentially ntotempo	ognitior with class ral demer	ר <u>ssical</u> וtia	
			Clinical gro	oups	FT	D vs SCD		AD vs FTD			
	Core bio	narker	AUC		P-value AU	с	P-value	AUC	P	value	
	Αβ42		1.00 (1.00,	1.00)	< 0.001 0.0	66 (0.48, 0.84)	0.079	0.92 (0.83, 1.0	0) < (< 0.001	
	Tau		0.98 (0.99	,1.00)	< 0.001 0.8	37 (0.74, 0.99)	< 0.001	0.82 (0.69, 0.9	6) < (< 0.001	
	NfL		0.88 (0.76,	0.99)	< 0.001 0.9	8 (0.95, 1.00)	< 0.001	0.88 (0.75, 1.0	0) <(0.001	
	Synaptic	biomarker	AUC		P-value AU	c	P-value	AUC	UC P-		
	SNAP2	5	0.99 (0.96	,1.00)	< 0.001 0.8	33 (0.70, 0.96)	< 0.001	0.75 (0.58, 0.8	9) 0.0	007	
	VAMP2		0.82 (0.69	0.95)	< 0.001 0.7	7(0.62, 0.92)	0.003	0.50 (0.31, 0.6	0.50 (0.31, 0.69) 0.5		
	NPTX2		0.62 (0.45,	0.79)	0.185 0.7	0 (0.54, 0.87)	0.002	0.57 (0.39, 0.7	6) 0.4	402	
	GluR4		0.60 (0.42	,0.78)	0.291 0.5	1(0.32, 0.69)	0.935	0.60 (0.42, 0.7	8) 0.2	267	
	Selecte	d panel	0.99 (0.96	,1.00)	< 0.001 0.9	97 (0.93, 1.00)	< 0.001	0.84 (0.70, 0.9	8) <(0.001	
	This tab differen	a is represented le shows tiates be	the AUC (95% of the AUC	C for eac he two g	h bioma noups be	nder the curve rker, which eing teste	ch shows d.	how we	ll it		
VOCAB: (w/definition)	glutamate receptor-4 (GluR4): a subunit of a complex called α -amino-3-hydroxy-5- methyl-4-isoxazole propionic acid receptor (AMPAR) that is involved in excitatory signal transmission in the post-synaptic neuron prodromal: the time between the first appearance of symptoms and the full development of the symptoms										
Cited references to follow up on	Kivisäkk, P., Carlyle, B., Sweeney, T., Quinn, J., Ramirez, C., Trombetta, B., Mendes, M., Brock, M., Rubel, C., Czerkowicz, J., Graham, D., & Arnold, S. (2022). Increased levels of the synaptic proteins PSD-95, SNAP-25, and neurogranin in the cerebrospinal fluid of patients with Alzheimer's disease. <i>Alzheimer's Research & Therapy</i> , <i>14</i> (1). <u>https://doi.org/10.1186/s13195-022-01002-x</u>							lendes, reased ch &			
Follow up Questions	How do synapses affect neurodegeneration? Would improving synapse functionality stop neurodegeneration? Are there other synaptic proteins involved in AD that could be better biomarkers?										

Patent Entry #1 Notes: Use of apoe4 motif-mediated genes for diagnosis and treatment of alzheimer's disease

Source Title	Google Patents
Source citation (APA Format)	Urfer-Buchwalder, A. Urfer, R. (2019). Use of ApoE4 motif-mediated Genes for diagnosis and treatment of Alzheimer's disease (U.S. Patent No. 20190338363A1). U.S. Patent and Trademark Office. <u>https://patentimages.storage.googleapis.com/b6/9b/1e/87e51cb6171512/US201</u> <u>90338363A1.pdf</u>
Original URL	https://patentimages.storage.googleapis.com/b6/9b/1e/87e51cb6171512/US201 90338363A1.pdf
Source type	Patent Application
Keywords	Alzheimer's, ApoE4
#Tags	#methods
Summary of key points + notes (include methodology)	 There are no effective methods for diagnosing, preventing, or treating Alzheimer's disease. There were previously many knowledge gaps in the field, which made the development of treatments difficult. In order to help diagnose, treat, and prevent AD, the inventors decided to research APOE4, a known AD associated gene. They found an APOE4 motif-mediated gene called Nuclear respiratory factor 1 (NRF1). This gene is a transcription factor for an Alzheimer's causing gene, FBXO46. They created a method that uses the presence of APOE4 to determine which molecule to give a patient to treat their Alzheimer's. Notes: Research has focused on amyloid plaques, which are caused by proteolytic cleavages of amyloid precursor protein (APP) and neurofibrillary tangles of hyperphosphorylated microtubule associated protein Tau (MAPT) Early endosomes are enlarged in sporadic AD Lack of research on root causes of AD Apolipoproteins are in volved in transporting cholesterol and triglycerides in the blood, and APOE is mainly produced by astrocytes and transports cholesterol to neurons through APOE receptors ApoE4 is the motif that modulated the motif-mediated genes that code for Nuclear respiratory factor 1 (NRF1), which is a transcription

	 factor for FBXO46 FBXO46 is thought to be an AD causing gene, which messes with the function of the physiological amyloidogenic pathway and causes protein sorting dysfunction, cell cycle reentry, and neuronal death Invention creates method of modulating expressions of ApoE4 motif mediated genes or gene products either by contacting the cell or gene expression product with an inhibitory molecule In order to use the invention, you must determine the APOE genotype of the individual because it affects the necessary method Advantages: transformative, targeted, addresses apoe4 motifmediated dysfunction AD risk increases with each copy of APOE4 inherited, risk for AD based on APOE is closer to the risks of mendelian diseases than more complex ones ApoE4 speeds up progression of AD ½ early onset AD is Familial AD, which is inherited through autosomal dominant mutations in Amyloid Precursor Protein, Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) SorLA is protective against Alzheimer's NRF1 has been found to target many neurodegenerative disease genes
Research Question/Problem/ Need	There are not effective methods for diagnosing, preventing, or treating Alzheimer's disease.
Important Figures	LRP1 is processed SorLA inhibits premature APP processing SorLA C-ter phosphorylation SorLA ectodomain (sSorLA) shedding APP phosphorylation frees Fe65 he55 nuclear translocation APP BACE1 processing C-ter SorLA binds the retromer APP is retrieved to the TGN Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Comparison of the processing Image: Compari

	Inhibition of SorLA production Premature APP processing Fe65 is not released after APP phosphorylation Fe65 is not released
	APOE4 APOE4 APOE4 APOE4 controlled transcriptional activation of FBXO46 gene FBXO46 is produced FBXO46 is produced FBXO46 specific ubiquitination and degradation of SorLA or SorLA regulator
	This is the genetic expression for the APOE4 pathway.
VOCAB: (w/definition)	Motif: a nucleotide or amino acid pattern in biological sequences Proteolytic: breaks down proteins Endosomes: organelles that carry out endocytoses and regulate movement of proteins and lipids along subcellular compartments, interacting with the secretory and endocytic pathway, specifically the plasma membrane Golgi, trans-Golgi network (TGN), and vacuoles/lysosomes Oligonucleotide: a short single strands of synthetic nucleic acids Moiety: a distinct part of a large molecule CpG island: regions of the genome that contain a high frequency of cytosine and guanine nucleotides that are connected with a phosphodiester bond, which are often found around the promoter regions of genes
Cited references to follow up on	Davies, G., Harris, S. E., Reynolds, C. A., Payton, A., Knight, H. M., Liewald, D. C., Lopez, L. M., Luciano, M., Gow, A. J., Corley, J., Henderson, R., Murray, C., Pattie, A., Fox, H. C., Redmond, P., Lutz, M. W., Chiba-Falek, O., Linnertz, C., Saith, S., & Haggarty, P. (2014). A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. <i>Molecular Psychiatry</i> , <i>19</i> (1), 76–87. <u>https://doi.org/10.1038/mp.2012.159</u>
Follow up Questions	Do the effects of ApoE4 on Cholesterol affect the progression of Alzheimer's? Could the SorLA protein be used to potentially be used to help prevent AD? What other causes of Alzheimer's could counteract the effect of this treatment?

Patent Entry #2 Notes: Compositions and methods for the treatment of Alzheimer's disease and other neurogenerative disease

Source Title	Google Patents	
Source citation (APA Format)	Denny, C., Chen, B. Hunsberger, H. (2024). <i>Compositions and methods for the treatment of alzheimer's disease and other neurogenerative disease</i> (U.S. Patent No. 20190338363A1). U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/49/cf/58/b4f5c6c2b70e48/WO2024 044355A2.pdf	
Original URL	https://patentimages.storage.googleapis.com/49/cf/58/b4f5c6c2b70e48/WO2024 044355A2.pdf	
Source type	Patent	
Keywords	Alzheimer's, treatment	
#Tags	#methods	
Summary of key points + notes (include methodology)	 There is a lack of treatments for Alzheimer's disease, and even less if the neuropsychiatric symptoms are considered. These inventors used the AMPAR, 5-HT4R, and NMDAR pathways to find a treatment for the cognitive decline and neuropsychiatric symptoms of AD. They used (R, S)-ketamine as an antagonist of NMDAR, and prucalopride as an agonist of 5-HT4R. The testing was performed on mice, and it was found that the combination of (R, S)-ketamine and prucalopride was effective at reducing cognitive decline, improving sleep, and improving the neuropsychiatric condition. This will help treat AD and other neurodegenerative diseases in the future, which will improve the lives of many people with neurodegenerative diseases. Notes: Combinational treatments may be necessary to treat each cause of AD Method uses agonist of serotonin 4 receptor (5-HT4R) and agonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) in combination to treat AD Works for mammals The drug improved sleep in the mice, which was affected by AD Feeding was also improved, but learning wasn't 	

	 Mainly treats neuropsychiatric effects of AD Tested (R, S)-ketamine and prucalopride, which ended up improving sleep and cognitive decile, as well as decreasing perservative behavior when used in tandem Ketamine antagonizes the NMDA receptor, predicted that molecularly similar compounds will work the same serotonin 4 receptor (5-HT4R) is a G protein coupled receptor that eventually causes the cleavage of the Amyloid Precursor Protein 5-HT4R agonist, NMDAR antagonist, and AMPAR agonists are used
	There are no effective methods for treating Alzheimer's disease, especially the neuropsychiatric symptoms of the disease.
Important Figures	INJECT SAL, KET, PRUC, OR K10 + P3 CTRL AD 1 1 1-5 TIME (DAYS)

Article #11 Notes: *Recent advances in Alzheimer's disease: mechanisms, clinical trials and new drug development strategies*

Source Title	Nature	
Source citation (APA Format)	Zhang, J., Zhang, Y., Wang, J., Xia, Y., Zhang, J., & Chen, L. (2024). Recent advances in alzheimer's disease: Mechanisms, clinical trials and New Drug Development Strategies. <i>Signal Transduction and Targeted Therapy</i> , <i>9</i> (1). <u>https://doi.org/10.1038/s41392-024-01911-3</u>	
Original URL	https://www.nature.com/articles/s41392-024-01911-3	
Source type	Review Article	
Keywords	Alzheimer's disease, mechanisms, treatments	
#Tags	#introduction	
Summary of key points + notes (include methodology)	 There are many existing methods of treatment and many more under investigation for Alzheimer's, which each treat one of the many overlapping hypotheses for the pathology of the disease. The hypotheses for the pathology of Alzheimer's are the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy hypotheses. Each hypothesis explains a different symptom or method of Alzheimer's and many of them are caused by or affect each other. Notes: Etiology comes from combination of factors such as aging, genetics, and environment various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy, which are interconnected symptoms are amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) in the brains, along with a cascade of pathological processes like neuroinflammation, synaptic dysfunction, mitochondrial and bioenergetic disturbances, and vascular abnormalities diverse clinical phenotypes connection between comorbidities and the pathological changes in AD, ongoing research pathological changes can begin decades before clinical symptoms 	

 acetylcholine deficiency, neuroinflammation, oxidative stress, biometal dyshomeostasis, glutamate imbalance, insulin resistance, gut microbiome abnormalities, cholesterol homeostasis disruption, mitochondrial dysfunction, and autophagy abnormalities contribute to AD as well as Amyloid beta and Tau New/current AD drugs/trials are sodium oligomannate, aducanumab, lecanemab, and donanemab Cholinergic hypothesis is that the cholinergic neurons are damaged, which causes a decrease in choline acetyltransferase (ChAT), which is what makes the acetylcholine, but it doesn't fully explain AD Amyloid beta itself is not a viable option for treating AD, but its interactions with Tau could be useful Imbalance of Phosphatases and kinases lead to hyperphosphorylated Tau Microglia cells cause neuroinflammation due to increased Amyloid Beta Microglia help increase tau Microglia help increase tau Microglia help increase tau Microglia help increase tau Oxidative stress bridges gaps in other hypotheses, such as tau, amyloid beta, metals, and the neuroinflammatory cycle Dyshomeostasis of Fe2+, Cu2+, and Zn2+ are associated with AD Metal ion chelators, which treat metal ion build ups, are hard to administer through the BBB Glutamate is the main excitatory neurotransmitter of glutamatergic neurotransmission in CNS, and in AD some of the receptors arr overstimulated, which overcomes the regulatory effects of magnesium, allowing excessive sodium and calcium ions into the brain Glutamatergic excitotoxicity helps cause mitochondrial dysfunction Autophagy can affect the function of mitochondria in AD Mitochondrial dysfunction is found in many AD brains Amyloid beta helps cause the excessive production of ROS AD damages mitochondrial DNA Alterations in expression levels of proteins rel
 Alterations in expression levels of proteins related to fission/fusion of mitochondria (such as Opa1, Drp1, MFN1/2,fis1, and post- translational modifications of Drp1) can bias the mitochondria towards too much fission, which can lead to damage in mitochondrial energy biology and the more DNA damage in the

O'Brien 47

Cited references to follow up on	 Chen, W., Zhao, H., & Li, Y. (2023). Mitochondrial dynamics in health and disease: Mechanisms and potential targets. <i>Signal Transduction and Targeted Therapy</i>, 8(1). <u>https://doi.org/10.1038/s41392-023-01547-9</u> Kerr, J., Adriaanse, B., Greig, N. H., Mattson, M., Cader, M., Bohr, V., & Fang, E. (2017). Mitophagy and Alzheimer's disease: cellular and molecular mechanisms. <i>Trends in Neurosciences</i>, 40(3), 151–166. <u>https://doi.org/10.1016/j.tins.2017.01.002</u>
Follow up Questions	Could the blood be filtered to help stop the progression of Alzheimer's? Are there any mitochondrial genes that contribute to the oxidative stress of AD? How does oxidative stress affect the accumulation of Amyloid Beta? Is it possible to simulate the damages to mitochondrial DNA from AD?

Article #12 Notes: Is Mitochondria DNA Variation a Biomarker for AD?

Source Title	Genes
Source citation (APA Format)	Gao, R., & Ma, S. (2022). Is Mitochondria DNA Variation a Biomarker for AD? <i>Genes</i> , <i>13</i> (10), 1789. <u>https://doi.org/10.3390/genes13101789</u>
Original URL	https://www.mdpi.com/2073-4425/13/10/1789
Source type	Review article
Keywords	Mitochondria DNA, Alzheimer's
#Tags	#introduction
Summary of key points + notes (include methodology)	 Alzheimer's disease is known to have altered mitochondrial function in the brain. It is unclear ad to whether this is a cause or effect of other mechanisms of the disease, but it is definitely interwoven into the total pathology of Alzheimer's. The mitochondrial DNA is often mutated in Alzheimer's patients and those with mild cognitive impairment. Amyloid beta and tau proteins are also known to decrease the function of mitochondria and increase the oxidative stress and Reactive Oxygen Species production. Overall, it is not known exactly how the variation in mitochondrial DNA correlates with the rest of AD pathology. Notes: Either upstream pathologies cause mitochondrial dysfunction, or it directly disrupts normal brain function and directly contributes to neurodegeneration Mitochondrial dysfunction influences Amyloid precursor protein (APP), production, cleavage, and Amyloid beta accumulation, and can lead to other molecular alterations (like oxidative stress) AD could be the reactions of the brain to mitochondrial dysfunction In AD, mitochondrial bioenergetic function reduces, including decreased respiratory chain activity, ATP production and enzymes involved in the mitochondrial tricarboxylic acid cycle, while the content of free radicals and reactive oxygen species (ROS) are elevated, as well as the dysfunction of mitochondrial axonal transport APP, Amyloid Beta, and gamma secretase complex localize near mitochondria

	 increases of different me Mitochondi Many muta mtDNA lever such as p-ta although the AD, it is cleared mtDNA variant 	xidativ olecule rial DN tions f els in t au and ere is ar that es bas	ve stress, eventually raising t es, such as Aβ IA (mtDNA) mutates more of found in the control regions he CSF are lowered before of t-tau controversial evidence on he it is related sed on cell type and brain reg	he sensitivity to ften than nuclear of the mtDNA ther CSF biomarl ow mtDNA is rela gion	[·] DNA ‹ers, ited to
Research Question/Problem/ Need	Are variations in mitochondrial DNA important and specific enough to be good biomarkers of AD?				
Important Figures	Is mitochondria variation a biomarker for AD?				
	mtDNA mutation	-		mtDNA copy nu	mber
	Sporadic mutations	XX	e na	Brain	(F)
	Haplogroup	÷	Mitochondrial Cascade Hypothesis age-related mitochondria dysfunction	Blood	يند: يندي
			Reduced mitochondrial bioenergetic function Changes in mitochondrial dynamics and distribution Impaired metabolic activity and oxidative obosphorylation	Animal model	G
			AD		
	This diagram is the graphical abstract.				
	UK H5 HV haplogroup		mtDNA mutation deletion 4977np deletion	Polymerase gamma poradic mutations ADH trogenase unit 2	egion

	This diagram shows the mutation in mtDNA that are associated with AD.
VOCAB: (w/definition)	Anterograde: occurring in the normal/forward direction of flow Gamma secretase complex: it carries out a sequential cleavage of the substrate to generate Aβ peptides
Cited references to follow up on	 Adlimoghaddam, A., Snow, W., & Albensi, B. (2019). Regional hypometabolism in the 3xTg mouse model of Alzheimer's disease. <i>Neurobiology of Disease</i>, 127, 264–277. <u>https://doi.org/10.1016/j.nbd.2019.03.008</u> Ashleigh, T., Swerdlow, R., & Beal, M. (2022). The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis. <i>Alzheimer's & Dementia</i>, 19(1), 333–342. <u>https://doi.org/10.1002/alz.12683</u>
Follow up Questions	Could the mutation of specific alleles in the mtDNA across multiple neurons trigger AD? Could this be modeled in a model organism, such as C. elegans? What environmental factors influence the mutation of mtDNA?

Article #13 Notes: *Methodological considerations for heat shock of the nematode Caenorhabditis elegans*

Source Title	Science Direct		
Source citation (APA Format)	Zevian, S. C., & Yanowitz, J. L. (2014). Methodological considerations for heat shock of the nematode Caenorhabditis elegans. <i>Methods</i> , <i>68</i> (3), 450–457. <u>https://doi.org/10.1016/j.ymeth.2014.04.015</u>		
Original URL	https://www.sciencedirect.com/science/article/pii/S1046202314001686?via%3Di hub		
Source type	Research article		
Keywords	Heat shock, Heat stress, Hormesis, C. elegans		
#Tags	#methods		
Summary of key points + notes (include methodology)	 There was a need to standardize the methodology of heat stress experiments in C. elegans. There are three major methods, liquid mediums, preheated plates, and incubators. The incubators are the easiest to keep at temperature and they are most likely to cause other unnecessary stress. There are many other components in the effects of heat stress, which need to be controlled and recorded for the success and reproducibility of the experiment. Notes: need to standardize the methodology of inducing heat stress, so that the results from different labs are comparable heat shock proteins (HSPs) are expressed more during heat shock and help to maintain proteostasis HSPs are very important to stress and aging The best temperature for C. elegans is 16 degrees Celsius Duration and time of day of exposure can alter results Moving the worms causes unwanted extra stress, so try to move them as little as possible, which is why placing the worms in an incubator is the best approach Make sure you consider the temperature gradient of the incubator Whenever you open the door, the warm air from the incubator will be replaced with the air from the room, so add a fan when you close the door to increase air flow and increase the surface area of warm objects by adding connected freezer packs to decrease the time 		

	 needed to reheat Determine time needed to get up to temp before the experiment Changes in food can affect the results of heat stress, so use standard food for C. elegans Consider the population density on the plates and keep it standard
Research Question/Problem/ Need	What are the best methods for causing heat stress in C. elegans?
Important Figures	

	The setup of the incubator to minimize time needed to heat it and reheat it after opening the door.
VOCAB: (w/definition)	Rheostats: a resistor that can vary the amount of electric current flowing through a circuit by adjusting its resistance Hormesis: the idea that a moderate amount of stress can help organisms adapt and end up improving their ability to handle more severe challenges later
Cited references to follow up on	None
Follow up Questions	Will heat shock proteins (HSPs) affect the amount of Amyloid beta produced? Are the variants of C. elegans that produce Amyloid plaques when heated going to be affected by the HSPs? Could the age-related deterioration of proteostasis have an effect on amyloid plaques and ROS in the adult C. elegans? Will the developmental delay caused by heat stress affect the results of my experiment?

Article #14 Notes: The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans

Source Title	PLOS Biology
Source citation (APA Format)	Maia Chagas, A., Prieto-Godino, L. L., Arrenberg, A. B., & Baden, T. (2017). The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans. <i>PLOS Biology</i> , <i>15</i> (7), e2002702. <u>https://doi.org/10.1371/journal.pbio.2002702</u>
Original URL	https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2002702
Source type	Engineering Article
Keywords	Fluorescence microscopy, temperature control, optogenetics, microscope
#Tags	#methods
Summary of key points + notes (include methodology)	 The expensiveness of traditional lab equipment limits the research of some labs. These researchers aimed to fix this by creating a microscope with various additional functions for cheap. This device uses a Raspberry Pi and Arduino to operate an adjustable focus camera, LED matrix, and heat module. It can take videos on some specific Raspberry Pis, and pictures on all versions. This microscope has been tested successfully with GFP and C. elegans. Notes: Uses off the shelf parts, such as an Arduino microcontroller, a Raspberry Pi 3, and some optical and mechanical parts Basic FlyPi can resolve samples down to about 10 microns, get video at up to 90 Hz, and take time lapse video over several hours Can add in fluorescence imaging, temperature control, or automated focusing The open-source GUI can control various aspects of the camera, and allows you to save pictures Works well for GFP
	 The design doesn't need all components to function, giving flexibility to the design and allowing the user to only assemble what

O'Brien 57

	they needWorks well with C. elegans
Research Question/Problem/ Need	The expensiveness of traditional lab equipment limits the research of some labs.
Important Figures	
	Image: the parts and assembly of the FlyPi.

	This figure shows the data for fluorescence detection and examples of fluorescent imaging using the microscope.
VOCAB: (w/definition)	collimate: make light accurately parallel
Cited references to follow up on	none
Follow up Questions	How can I get the specific PCB? How can I make sure the room temperature doesn't affect the temperature of the C. elegans on the temperature control unit? Have further improvements to the FlyPi been made since this paper was published?

Article #15 Notes: *Modeling Alzheimer's Disease in Caenorhabditis elegans*

Source Title	MDPI Biomedicines
Source citation (APA Format)	Alvarez, J., Alvarez-Illera, P., Santo-Domingo, J., Fonteriz, R. I., & Montero, M. (2022). Modeling Alzheimer's Disease in Caenorhabditis elegans. <i>Biomedicines</i> , <i>10</i> (2), 288. https://doi.org/10.3390/biomedicines10020288
Original URL	https://www.mdpi.com/2227-9059/10/2/288
Source type	Review article
Keywords	C. elegans, Alzheimer's
#Tags	#introduction
Summary of key points + notes (include methodology)	 <i>C. elegans</i> have been used as model organisms since 1963 as they are great for fluorescence marking and surprisingly have a very homologous genome with humans. C. elegans contain homologous genes with much of the AD genome as well, making them a great model for AD. C. elegans must be engineered to express Amyloid beta though, as they are not naturally able to produce it. Many studies have researched the pathology of both Amyloid beta and oxidative stress in these nematodes. Notes: <i>C. elegans</i> do not naturally express Amyloid beta but they are often given genes that allow them to overexpress amyloid beta as a model for Alzheimer's Tau proteins normally promote tubulin assembly on microtubules and stabilize their structure 53% of the human coding genome has recognizable orthologues in <i>C. elegans</i> lacks beta secretase (BACE1), which prevents it from naturally producing Amyloid beta peptides <i>C. elegans</i> don't have APOE Transparent body of C. elegans allows for easy and simple detection of fluorescence APP processing is conserved in both organisms Toxicity of Amyloid peptide determines its toxic effects Ageing can lead to many damaged or aggregation-prone proteins

O'Brien 61

	The Pros and Cons of C. elegans as a model organism for AD
VOCAB: (w/definition)	Nucleation: the initial process of atoms combining to form a new phase or structure
Cited references to follow up on	none
Follow up Questions	Which of these drugs have been proved to work? Which drugs have failed or are still in testing? What do the most effective drugs target?

Article #16 Notes: *Temporal Dynamics of β-Amyloid Accumulation in Aging and Alzheimer Disease*

Source Title	American Academy of Neurology
Source citation (APA Format)	Jagust, W. J., & Landau, S. M. (2021). Temporal Dynamics of β-Amyloid Accumulation in Aging and Alzheimer Disease. <i>Neurology</i> , <i>96</i> (9), e1347–e157. <u>doi.org/10.1212/wnl.000000000011524</u>
Original URL	https://www.neurology.org/doi/10.1212/WNL.000000000011524
Source type	Research article
Keywords	Amyloid beta, time, aging, Alzheimer's
#Tags	#introduction
Summary of key points + notes (include methodology)	 The researchers aimed to determine the time it took amyloid beta to accumulate from the levels of a cognitively normal person to the levels found in AD patents. They took [¹⁸F] Florbetapir (FBP) Aβ PET scans of hundreds of participants over the course of 9 years. They found that Amyloid beta accumulation over time produces a sigmoidal graph, which starts with a low slope, which increases until a point where it levels off as it approaches a maximum value. Notes: Two samples used and monitored over 9 years Cognitively normal individuals were followed along with those with mild cognitive impairment and AD Used [¹⁸F] Florbetapir (FBP) Aβ PET scan acquired at about two-year intervals Graphed changes in FBP and used a quadratic line of best fit because it had a better <i>R</i>² value. Used this graph's line of best fit to predict the accumulation of Amyloid beta over time in terms of both FBP SUVR and centiloids This study used 782 participants and had long follow up times, which makes it more reliable and gives a good insight into the development of the disease Could mean that the Amyloid hypothesis is correct, at least partially
Research Question/Problem/ Need	How does Amyloid beta accumulate in the brain over time and when does it start?

Important Figures	A 0.745 0.97 0.993 0.058 0.N B
Important Figures	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
VOCAB: (w/definition)	Centiloids: the unit of the Centiloid (CL) scale, which is a standardized method of measuring Amyloid plaques in the brain as seen on PET scans. This scale use scores of 0 as an A β -negative brain and 100 as a brain with moderate AD as benchmarks to help guide the assignment of a score. Standardized uptake value ratio (SUVR): a dimensionless ratio that is used in PET scans to determine if the uptake value in a target area is very different from a
Cited references to follow up on	suvre sea. It is calculated with this equation: SUVR = SUV (target region) / SUV (reference region)
Follow up Questions	What were the levels of ROS in these patients during this time? Did oxidative stress increase with the same pattern or was it different? What trends were see throughout this time period for the other hypotheses of AD pathology?

Article #17 Notes: Fluorescent Protein Methods: Strategies and Applications

Source Title	Mathads in Call Biology
Source Inte	Methods in Cell Biology
Source citation (APA Format)	Hutter, H. (2012). Fluorescent protein methods: strategies and applications. <i>Methods in Cell Biology, 107,</i> 67–92. doi.org/10.1016/B978-0-12-394620-1.00003-5
Original URL	https://www.sciencedirect.com/science/article/abs/pii/B97801239462010000 35
Source type	Methods review
Keywords	GFP, C. elegans
#Tags	#methods
Summary of key points + notes (include methodology)	This article reviewed the methods of how to introduce GFP and other fluorescent markers into C. elegans. GFP is the most common fluorescent marker used in C. elegans, and there are many different versions of this protein available. C. elegans are good organisms for the use of fluorescence imaging because they are transparent, which minimizes sample preparation and allows for the study of the worms over time or before and after treatment.
	 Notes: GFP is a genetically encoded marker is often used because it is so easy to introduce C. elegans are transparent, making the use of fluorescent markers
	 easier The number of fluorescent markers has increases significantly, leaving researchers with plenty of choices and allowing them to pick the perfect fluorescent marker for their experiment C. elegans are imaged alive, which is very useful as they can be imaged multiple times, allowing them to be useful for studies that access changes over time
Research Question/Problem/ Need	What are the current methods and uses of fluorescence in C. elegans?
Important Figures	none
VOCAB: (w/definition)	Autofluorescence- the fluorescence of naturally occurring substances emitted from biological structures.

Cited references to follow up on	none
Follow up Questions	Is roGFP introduced in the same manner as GFP? How is the dye Thioflavin T given to C. elegans? How will the use of these markers affect the molecules and proteins being studied in my experiment?

Article #18 Notes: Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg?

Source Title	Antioxidants
Source citation (APA Format)	Tamagno, E., Guglielmotto, M., Vasciaveo, V., & Tabaton, M. (2021). Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? <i>Antioxidants</i> , <i>10</i> (9), 1479. https://doi.org/10.3390/antiox10091479
Original URL	https://www.mdpi.com/2076-3921/10/9/1479
Source type	Review article
Keywords	oxidative stress; Beta amyloid; Alzheimer's disease
#Tags	#introduction
Summary of key points + notes (include methodology)	 There is conflicting evidence on whether Amyloid plaques or oxidative stress comes first in the pathology of Alzheimer's. This is because both mechanisms cause each other and have a cyclic nature in this disease. Oxidative stress regulates the formation and toxicity of Amyloid plaques, while Amyloid beta changes oxidative phosphorylation to create more ROS. Notes: Conflicting evidence on whether Amyloid beta comes first or if oxidative stress comes first Hard to determine because it's a cycle (both mechanisms cause the other) AD is becoming one of the most expensive and deadly diseases in the world Pathology of AD has many mechanisms and is not fully understood Amyloid causes oxidative stress, by changing oxidative phosphorylation, which involves a reduction in the efficiency to transfer electrons, which results in an increase in ROS production (mostly at complex I and complex III) Oxidative stress regulates the accumulation and toxicity of amyloid beta A correlation has been found between the induction of OS and the increase in γ-secretase cleavage on APP Aβ induces OS in vivo and in vitro, and OS increases the production of Aβ

Article #19 Notes: Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin

Source Title	International Journal of Molecular Sciences
Source citation (APA Format)	Tchekalarova, J., & Tzoneva, R. (2023). Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. <i>International Journal of Molecular Sciences</i> , 24(3), 3022. doi.org/10.3390/ijms24033022
Original URL	https://www.mdpi.com/1422-0067/24/3/3022
Source type	Review Article
Keywords	Oxidative stress, aging, Alzheimer's disease, Parkinson's disease, melatonin
#Tags	#introduction
Summary of key points + notes (include methodology)	 AD is one of the most age-related diseases, and two major mechanisms of this disease are Amyloid plaque accumulation and oxidative stress. Antioxidants have been shown to be effective in treating, not just oxidative stress, but also Amyloid plaques. This provides further evidence that these two mechanisms are very closely related and might be related to aging as antioxidants are more effective before clinical symptoms appear, which is at a younger age than when clinical symptoms are present. Notes: AD is one of the most closely related diseases to age Still a debate over whether oxidative stress or amyloid beta comes first Astrocytes typically clear out extracellular Amyloid beta and regulate the Blood Brain Barrier, but in conditions of high oxidative stress, the function of astrocytes is impaired, allowing amyloid plaques to build up Oxidative stress causes more activity of β- and γ-secretase, which split APP into Amyloid beta, which then forms plaques impairment of cell membranes due to oxidative stress (including the oxidation of the low-density lipoprotein receptor-related protein) could cause Amyloid plaques

	 Free radical species (like ROS) in the mitochondria is known to initiate many mechanisms of AD pathology, including Amyloid plaques Melatonin, an antioxidant, can help to reduce not just oxidative stress, but also Amyloid beta plaques as well, as they are very interrelated mechanisms
Research Question/Problem/ Need	How does the decrease of melatonin that happens as a person ages change the susceptibility of these persons to Alzheimer's and Parkinson's?
Important Figures	None
VOCAB: (w/definition)	Soluble amyloid precursor protein (sAPP): a secreted form of APP that is involved in the regulation of Amyloid beta production and the process of Amyloid Precursor Protein processing sAPPα: a non-amyloidogenic fragment secreted during normal APP processing sAPPβ: byproduct of the amyloidogenic processing of APP
Cited references to follow up on	Ledezma, C., Coria-Lucero, C., María Belén Delsouc, Casais, M., Cecilia Della Vedova, Ana Cecilia Anzulovich. (2021). Effect of an Intracerebroventricular Injection of Aggregated Beta-amyloid (1–42) on Daily Rhythms of Oxidative Stress Parameters in the Prefrontal Cortex. <i>Neuroscience</i> , 458, 99–107. https://doi.org/10.1016/j.neuroscience.2020.08.016
Follow up Questions	How do other current treatments' effectiveness differ based on the age of the individual? How does age affect the pathologies of AD and Parkinson's? Do their pathologies differ in mechanism or effectiveness with age?

Article #20 Notes: Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings

Source Title	Antioxidants
Source citation (APA Format)	Korovesis, D., Rubio-Tomás, T., & Tavernarakis, N. (2023). Oxidative Stress in Age- Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. <i>Antioxidants, 12</i> (1), 131–131. https://doi.org/10.3390/antiox12010131
Original URL	https://www.mdpi.com/2076-3921/12/1/131
Source type	Review article
Keywords	Aging, age-related pathology, neurodegenerative disease, oxidative stress, protein aggregation, Reactive Oxygen Species (ROS)
#Tags	#introduction
Summary of key points + notes (include methodology)	 Oxidative stress has been shown to increase with the age of the patient. Oxidative stress is very important to the pathologies of many age-related neurodegenerative diseases, such as Alzheimer's. Oxidative stress is linked to the accumulation of Amyloid beta, and as oxidative stress increases over time, Amyloid beta must also increase over time. Notes: ROS molecules: hydrogen peroxide (H₂O₂), superoxide anion radicals (O₂*-), hydroxyl radicals (*OH), singlet oxygen (¹O₂), nitrogen dioxide (NO₂*-), hypochlorous acid (HOCI) and peroxynitrite (ONOO⁻) O₂*-, the most common ROS in the mitochondria, is generated by the one-electron reduction in molecular oxygen during oxidative phosphorylation ROS are produced in other parts of the cell other than mitochondria, such as peroxisomes To measure ROS, you can use a variety of methods, such as measuring the oxidized biomolecules, measuring Hypohalous Acids (an acid produced in the presence of Oxidative stress), many different variations of fluorescence imaging, protein carbonylation, and protein oxidation
Research Question/Problem/ Need	How does oxidative stress and its effects change with age?

Important Figures	ROS levels Antioxidants ONOO- O2- H2O2 HOCT H2O2 HOCT Health Oxidative Stress Disease This is the graphical abstract of the paper.
VOCAB: (w/definition)	electron spin resonance (EPR)- a spectroscopic technique used to study molecules, such as ROS with unpaired electrons
Cited references to follow up on	Murphy, M. P., Bayir, H., Belousov, V., Chang, C. J., Davies, K. J. A., Davies, M. J., Schumacker, P. T. (2022). Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. <i>Nature Metabolism</i> , 4(6), 651–662. https://doi.org/10.1038/s42255-022-00591-z
Follow up Questions	How does this relationship play a role in the correlation of amyloid plaques and age in individuals developing AD? Which of these methods work best in C. elegans? Do amyloid plaques cause more oxidative stress in the brains of elderly organisms, as opposed to younger organisms?