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Abstract—The "Split ADC" architecture concept is applied to
correction of errors due to nonlinearity of an open-loop residue
amplifier in a pipeline ADC.  Determination of calibration
parameters and correction of errors takes place entirely in the
background in the digital domain; no interaction with analog
circuitry is required.   An algorithm exhibiting convergence of
calibration parameters in fewer than 100 000 conversions is
presented.
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 I. INTRODUCTION

HE use of open-loop residue amplification in pipelined
ADCs has been the subject of recent investigation due to

the power advantages over more precise closed-loop
techniques, as well as the general appeal of relaxing accuracy
requirements on analog circuitry in deep submicron CMOS.
Due to the nonlinearity of the open-loop amplifier, digital
calibration is used to restore acceptable linear performance
for the overall ADC.  Previous work [1] has described
statistically based methods for determining the required
calibration coefficients, which have the drawback of
relatively long adaptation times.

The “Split ADC” concept [2-3] has been applied to correct
linear gain errors in algorithmic and pipeline ADCs, and has
the advantage of faster calibration convergence.  The purpose
of this paper is to present an algorithm applying the split
ADC approach to digital background correction of errors in
pipeline ADCs arising from the nonlinearity of open-loop
residue amplifier stages.  Compared with [1], the novel
contribution of this work is the dramatically reduced time for
calibration convergence by adopting the split-ADC approach
to correct amplifier nonlinearity errors, thereby making

calibration of converters in the 14b to 16b range feasible.
This paper is organized as follows: Section II provides a

description of the pipeline ADC investigated for this work
and a general overview of the split ADC concept.  Section III
describes the theory behind the digital correction technique
and the background calibration algorithm.  Experimental
results from circuit- and behavioral-level simulations are
presented in Section IV.

 II. BACKGROUND

A. Split ADC

The concept of the split ADC architecture is shown in
Figure 1. The ADC is split into two channels, each converting
the same input and producing individual output codes xA and
xB.  The average of the two outputs is reported as the ADC
output code x.  The background calibration signal is
developed from the difference ∆x between codes xA and xB.  If
both ADCs are correctly calibrated, the two outputs will
agree and the difference ∆x will be zero.  In the presence of
nonzero differences, the pattern of "disagreements" in ∆x can
be examined in an error estimation process to adjust
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Fig. 1.  Split ADC concept.



calibration parameters in each ADC and drive the difference
and the ADC errors to zero.

Comparison with statistical background calibration
techniques in [1] shows the advantage of using the difference
∆x for the calibration signal: the magnitude of the unknown
ADC input signal is greatly reduced by the subtraction in the
calibration signal path.  Thus, as discussed in [2-4], it is not
necessary to accumulate a large number of conversions to
decorrelate the input signal, which is required in the case of
statistically based digital background calibration techniques.

B. Pipeline ADC

A block diagram of the ADC investigated in this work is
shown in Figure 2. The pipeline ADC is split into two
identical halves, each processing the same input signal.  A
single 4-bit pipeline stage with open loop reside amplification
similar to that of [1] was designed in a 0.25 µm CMOS
process.  This block was used for all stages of the pipeline.
Improvements from options such as stage scaling and
optimization of stage resolution were not investigated, in
order to simplify the design process and focus on the digital
correction and background calibration issues.  The calibration
parameters required to describe each stage for digital
correction are the linear gain G of the stage amplifier and a
parameter p characterizing the amplifier nonlinearity.

  Also shown in Figure 2 is a block diagram of each residue
stage. As in [1], the S/H, ADC, and DAC functions are

combined in a switched capacitor network.  The ADC
decision D, (-1 ≤ D ≤ +1) is fed to a DAC; the DAC output
corresponding to D is subtracted from the sampled input vIN

and the difference is applied to the input of an open loop
amplifier with nominal gain G.  Ideally the residue amplifier
would implement
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vR =G vIN −D ⋅VREF[ ] (1)

As in [1, 2] the stage is capable of operating in distinct
residue modes as determined by a mode select bit M.  Due to
the redundancy afforded by the choice of stage gain G and
ADC resolution, either residue mode will allow correct
operation of the entire ADC.  The key to the split ADC
concept is that use of different residue modes allows the "A"
and "B" converters to proceed along different decision
trajectories DiA, DiB.  Despite the different trajectories,
however, if the calibration parameters used in digital
correction are correct, then the converters should arrive at the
same result, since both see the same input.  Errors in the
calibration parameters will result in a nonzero difference ∆x
which can be used in an iterative feedback loop to null out
errors in the estimated calibration parameters.

 III. ERROR ESTIMATION

A. Digital Error Correction

If the pipeline stages are linear and the stage gains Gi

known, it can be shown that the corrected digital outputs are
determined from the stage decisions Di by [1]
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Equation (2) can be rewritten as
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in which the notation Db indicates the results of decisions
D2 through D5 in the backend of the pipeline ADC.  To
simplify the following discussion, we will make the following
assumptions:

i) errors in stages 2-5 are negligible; the only errors to be
calibrated are the gain error and nonlinearity error of stage 1.
In practice, the technique to be described could be extended
to calibrate stage 2 errors if necessary.

ii) offset contributes only to overall ADC offset and has
negligible effect on nonlinearity.

B. Pipeline ADC Error Modeling

Figure 3 shows a simplified model of the open-loop gain
stage, with exaggerated nonlinearity for illustration purposes.

As shown in [1], the differential pair gate overdrive VOV

Fig. 2.  Pipeline ADC block diagram.



can be chosen so that third order nonlinearity dominates; in
this case the vid to vod relationship can be described by
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(4)

in which e(α,vid) is the error due to the stage nonlinearity
and α is a parameter determined by a power series fit to the
specific residue amplifier characteristic.

One possible strategy for error correction would be to
determine the parameter α using a background calibration;
then if vid were known, it would be possible to calculate the
correction ε using the cubic term of (4); however, vid is not
known directly.  What is known is the output vod, which is
measured by the back-end ADC pipeline stages and is
represented in digital form as Db.  Shown in Figure 3 is a

qualitative plot of the behavior of the nonlinearity error,
which is a function of both the output voltage vod (or,
equivalently, Db) and the cubic nonlinearity parameter α.
Note that α is defined in terms of voltages vid and vod ; since
we will be working with the digital representation Db, we
define a parameter p to capture the cubic nonlinearity in the
digital domain.  Since the function e( p, Db ) is not available
in an analytically convenient form, a table lookup approach is
taken [1, 2] for calculating the quantity to be used in digital
correction.

C. Estimation of Calibration Parameters

A block diagram of the calibration algorithm is shown in
Figure 4.  To correct for the additional nonlinearity error, the
approach of (3) is modified by including a correction term for
the nonlinearity defined in (4) as follows:
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x = D1 +
1
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Db + e ˆ p 1,Db( ) (5)

where 
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ˆ G 1 and 

€ 

ˆ p 1 represent estimates in the digital domain
of the values of G1 and p1 describing analog domain behavior
of the first stage amplifier.  Fractional errors in these
estimates can be defined as
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ˆ G 1 = G1 1+ εG1( ) ˆ p 1 = p1 1+ εp1( ) (6)
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ˆ G 1 = G1 1+ εG1( ) ˆ p 1 = p1 1+ εp1( ) (7)

Applying the definitions of (6) and (7) to (5) for each of
the “A” and “B” ADCs in the split gives the following,
(assuming the errors are small):

Fig. 3.  Open loop gain stage.

Fig. 4.  Calibration algorithm block diagram.



Note that in (8a) and (8b), the output code from each ADC
is expressed in terms of an error adding to the correct output
code x.  For the calibration parameter estimation loop, taking
the difference cancels the correct code component leaving
only terms in the parameter estimation errors:
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The coefficients in (9) are already calculated when

performing the digital correction of (5).  Observations of ∆x
values from several conversions are grouped in an iterative

matrix solution procedure as used in [2, 3] to refine 
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ˆ G  and 
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ˆ p ,
driving the error in these estimates to zero.  An LMS
procedure updates the parameter estimates, as (for example):
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ˆ G (new ) = ˆ G (old ) −µ εG   (10)

in which µ controls the convergence of the iteration.

 IV. RESULTS

The system was simulated behaviorally using MATLAB.
System parameters are given in Table 1.  The amplifier
nonlinearity parameter corresponded to a maximum error of
2% referred to the ±0.8V swing at the output of the residue
amplifier, which was obtained from circuit-level simulation.

Figure 5 shows ADC integral nonlinearity (INL) before
calibration with errors of ≈ ±30 LSB at the 14b level.  After
calibration, INL improves to +0.5/-0.8 LSB as shown in
Figure 6.  The adaptation transient is shown in Figure 7.  In
fewer than 100 000 conversions, calibration has converged to
sufficient accuracy for noise-floor-limited performance from
the ADC.  This represents a better than two orders-of-
magntiude improvement in convergence time over [1].
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Table 1.  System simulation parameters

PARAMETER VALUE

Input full scale range VFS ±1.5 V

Residue Amplifier Gain 6.13

Initial Gain Estimate

G

6.05

Amplifier Nonlinearity Parameter 0.133

Initial Nonlinearity Estimate

α

0

Differential pair overdrive bias VOV 0.25 V

LMS parameter µ 1/256

Conversions per matrix iteration group 32

Sub-ADC transition level error range ±10 mV

Input Referred Noise -86 dBFS

Fig. 5.  Integral nonlinearity, uncalibrated.

Fig. 6.  Integral nonlinearity, calibrated.

Fig. 7.  Convergence of ADC error vs. conversion index.
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