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ABSTRACT

This paper describes the implementation of
a Euclidean squared classifier with a charge
based synaptic matrix and discriminator, based
on a previously implemented Hamming classi-
fier. The discriminator circuit is a general-
ized n-port version of the two-port differential
charge-sensing amplifier that is conventionally
used in DRAM’s for bitline sensing. Both the
quantifier and discriminator are implemented by
charge based techniques, granting the simulta-
neous availability of high integration density, low
power consumption and high speed. The analog-
to-digital (A/D) implementation was chosen to
illustrate the network’s classification characteris-
tics, since A/D conversion can be interpreted as
classifying an input in terms of A/D quantization
levels. A detailed analysis of the classifier config-
uration is presented. Design issues are addressed
at both the system and circuit levels, and some
limitations are identified. Simulation results of
the the circuit confirming its theoretical perfor-
mance are presented, as well as measurements of
the implemented chip. The circuit occupies an
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area of 500umx250um, operates with a single
5V power supply, and consumes less than ImW
of static power.

I. INTRODUCTION

The Neural Euclidean classifier, like the Ham-
ming classifier [1], is one of the least com-
plex artificial neural networks. Nevertheless,
it achieves distinctive classification tasks with
a very high connection efficiency. The net-
work consists of a purely capacitive synaptic
matrix which is preprogrammed during fabrica-
tion. For any arbitrary combination of exemplar
count, convergence to any pattern other than
that stored in its memory is impossible. The
synaptic matrix measures the Euclidean squared
distance between an m-dimensional input vec-
tor (1,2, ..., Try) and all of the previously fixed
neural weights (Zi1,Ti2, ..., Tim). The “similar-
ity scores” (51,83, ..., Sp) thus generated for the
exemplars are described by:

(1)
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where A’ is an arbitrary constant and A is an
arbitrary positive constant. Therefore the simi-
larity score obtains a maximum value when the
input vector exactly matches the exemplar vec-
tor for the specific row i. After eliminating com-
mon mode terms that have no influence on the
competitive decision process carried out in the
discriminator subnet, equation (1) simplifies to

m m
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So, for a Euclidean classifier, the capacitive
quantifier subnet is the implementation of (2).
The discriminator network identifies the best-
matching exemplar (the row with maximum S;)
and determines it as the winner. The next sec-
tion describes how this function is obtained via
circuit variables.

(2)

II. CIRCUIT ANALYSIS

A. Quantifier

Figure 1 shows the complete schematic dia-
gram of the circuit implementation. The quan-
tifier subnet comprises 1} an n X m matrix
of exemplar proportional synaptic capacitors
(Ci1y-+-sCnm), 2) the neural function invoking
capacitors (Cri, ..., Crpn), 3) a normalization ma-
trix containing dummy capacitors, 4) row and
column precharge transistors clocked to ®;, and
5) input transmission gates clocked to ®2. Each
row of synaptic capacitors is mask-programmed
to represent the neural weight of the exemplar
while the C; capacitors assist generation of the
similarity scores. The dc-driven dummy capac-
itors are also mask-programmed to equalize the
total capacitance in each row.

The discriminator subnet (the right side of the
circuit in Figure 1) is kept in a high impedance
state until &3 is activated, to ensure proper
charging of capacitors during the first two clock
stages. On @9, input voltages are transferred
to quantifier columns, perturbing row voltages
through the synaptic capacitor matrix. These
voltages convey the previously defined similarity
scores. By writing the steady state total charge
during the two clock phases ®; and @, and
equating them to satisfy charge conservation, we

obtain

Vop K
Vri = ref+2DCD

( 22 (z'qu) Z

j=1

Vri is the voltage of row i and CTOT is the
total normalized capacitance of each row. K is
a constant that involves sizing of the synaptic
capacitors. Equation (3) has been obtained by
using the following definitions

V}‘ Cz] i o CT:
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j=1

Vj is the j th input voltage of the neural classi-
fier. Cp; is the sum of all non-synaptic capaci-
tances along row i. Note that the first term on
the right-hand side of equation (3) is a common-
mode term to be ignored, and the second term
is identical to the similarity score defined previ-
ously. The capacitive quantifier subnet generates
the similarity scores in the form of row voltages
at the end of the leading transition of ®a.
B. Discriminator

The discrimination process begins as the
sources of all NMOS transistors in the feedback
matrix are pulled down on ®3. These transistors
turn on in saturation and start discharging the
rows. The rate of discharge is the lowest for the
row of highest voltage because the lower voltages
of other rows minimize its pull-down current.
Therefore, the voltages of all non-best-matching
rows eventually fall below Vo, the NMOS thresh-
old voltage, while that of the best-matching row
still remains above V. The moment this hap-
pens, the best-matching row returns to a high
impedance state while other rows continue to be
discharged until all are grounded. This com-
pletes the first phase of discrimination. When
row pull up transistors are turned on with &y,
all row voltages start an upward swing. Only the
voltage of the best-matching row, having an ini-
tial advantage of at least one Vr and the highest
rate of pull-up, reaches Vpp. Other row volt-
ages are kept below Vr by the pull down transis-
tor M1 together with those feedback transistors
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Figure 1: Circuit Diagram of the Neural Euclidean Classifier. The clock sequences are
displayed in the upper right-hand corner.
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Figure 2: Spice simulation of the Neural Euclidean Classifier.
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controlled by the best matching row. Output
buffers digitize these signals to Vpp or 0V, and
transfer them to output channels during ®s.

By wutilizing a Neural Euclidean Classifier, we
have implemented a CMOS circuit with 8 rows
and one input as an analog to digital converter.
The SPICE simulation results are presented in
Fig. 2 for the first four clock sequences. The first
20ns (¥;) display the precharging of the rows.
Next, during @5, the row voltages are perturbed
according to the similarity scores. At 50ns (®3),
the discrimination process begins as the rows are
discharged. The pull up transistors of each row
pick the winner as they suppress the rest of the
row voltages, once they are activated at 120ns

(@4)-

II1. DESIGN CONSIDERATIONS

A. Offset Voltage

For the network to select the ‘winner’ prop-
erly, the network offset V,s; originating from
the quantifier and discriminator must be smaller
than the minimum voltage difference between
the highest two row voltages. The “quantifier off-
set” is defined as the amount by which a row volt-
age may differ from its pre-programmed value,
due to randomly mismatching capacitive com-
ponents as a result of fabrication. The “discrim-
inator offset” describes the minimum voltage dif-
ference needed between the two highest row volt-
ages for the winner selection. This nonzero volt-
age is necessary so that randomly mismatching
row components and noise will not affect favor-
ing the correct ‘winner’ of the two rows. The de-
tailed formulation of the network offset has been
presented in [2], from which total offset is calcu-
lated to be 30mV for Vpp = 5 V and a network
with 8 rows and one input vector (this implies
that j = 1 for all previous formulas).

The classifier, for the analog to digital cir-
cuit, is programmed so that the input of the
converter is quantized to 8 equal levels. Note
that the equal spacing is not a constraint: if de-
sired, one may program smaller quanta spacings
in some signal ranges to reduce quantization un-
certainty. For this classifier to function properly,
the minimum difference between the highest two
row voltages, AVg derived in [2], must be larger

than the network offset voltage at any given in-
put.

X q (6)

where ‘q’ is the minimum quanta spacing be-
tween two programmed exemplars. The dummy
capacitance of the row with the largest C; and
Cri is set to zero, in order to obtain a minimum
Cror. Hence, an equation that gives a restric-
tion of the sizing of the capacitors is obtained.
Since K must be a positive constant, the denom-
inator of the equation determines the minimum
quanta spacing allowed.

2 x Vors X Crow

K> 7

Vopa® — 2Vos s (2T; = T?) s ()
"

q2 > 2V0.ff(2Tz T; )mag (8)

Vop
where Cyy is the row capacitance of the non-
synaptic and non-dummy capacitors. Once these
constraints have been satisfied, the classifier may
be designed to operate within safety margins.
In the implemented circuit, the capacitor values
used are 20 times larger than the minimum val-
ues required to have the classifier work safely.

B. Reference Voltage

As can be seen from the circuit schematic in
Figure 1, the reference voltage V,¢s is the ini-
tial value to which each of the row voltages is
charged. Since it is the same for every row, it is
a common mode term in (3) and (from a math-
ematical point of view) does not affect the dis-
crimination process. From the point of view of
the physical circuit, however, the choice of V¢
is very important for successful discrimination
among the row voltages. If V;.; is too low (less
than a threshold voltage V- above the negative
supply Vs), then for some input voltages it is
possible that none of the discriminator transis-
tors are conducting. This would be more of a
problem for the smaller input voltages. On the
other hand, if V;¢y is too large, then discharging
the row voltages would take longer. Also, simu-
lation results have shown that when V,. is too
large, the discrimination process is not carried
out correctly and other rows are falsely selected
as the winner.
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well CMOS process.

Figure 3: Die photo of circuit implemented in 2um n

[

.

output characteristic of neural classifier circuit as A/D converter.

Figure 4: Input
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In this implementation, the value of V;¢s was
chosen by iteration from simulation results. Un-
fortunately, no provision was included in the fab-
ricated chip for adjusting V;¢s to check if the
simulation design choice was indeed optimal. As
will be seen in the Experimental Results section,
a problem was seen in the device characteris-
tic that can probably be attributed to a too-low
choice of V.

IV. IMPLEMENTATION

The circuit of Figure 1 was fabricated in a 2um
n-well CMOS process through the MOSIS ser-
vice. Figure 3 shows a die photo of the circuit,
with the capacitive quantifer subnet and discrim-
inator network identified. Also implemented was
an 8-t0-3 encoder which provided the digital out-
put in binary format, rather than the 1-of-8 for-
mat at the discriminator output. The total area
of the circuit is 500pmx250um.

V. EXPERIMENTAL RESULTS
A. Classification

To test the operation of the neural classifier
A/D, the input-output characteristic was dis-
played on an oscilloscope. The A/D input was a
triangle wave over the input range of 0 to +5V.
The digital output was converted back into ana-
log form with a D/A converter, which was dis-
played on the scope in X-Y mode.

Figure 4 shows the measured input-output
characteristic at a conversion rate of 2.5MHz.
The X axis is the input voltage at 0.5V /division;
the Y axis is the analog representation of the
digital output code at one LSB/division. Ideally
the output would be a series of uniform steps
(quantization intervals). Figure 4 shows good
uniformity for the quantization intervals corre-
sponding to codes 2 (010) through 7 (111); the
peak-to-peak variation of step size from the av-
erage is +24% of a quantization interval.

A significant problem shown in Figure 4 is
a missing code at code 1 (001). Two possible
causes of this effect are being investigated. The
first possible cause is the capacitance associated
with a minimum geometry overlap between the
row and orthogonal column lines of the quanti-
fier subnet. In the analysis of Section II, this

capacitance was assumed to be negligible. If its
value were to be included, it would be subtracted
from C;j; in equation (4). This would explain
why larger quanta values are not affected by the
overlapping capacitance, since this capacitance
can be neglected for the larger Cj; values. The
second possible cause for a missing code is the ef-
fect described in Section I11.B, in which a too-low
value of V;.; causes the discriminator to become
inactive for low input voltages. Future work will
address the influence of V¢ on the input range
of this classification approach.

B. Power Consumption

At the maximum A/D conversion rate of
5MHz, the measured power consumption of the
entire chip was 21 mW. Most of this power was
required by the on-chip voltage references which
was required for producing V;..s. The clock-rate-
dependent component of power consumption was
450 W, indicating the low power requirement of
the classifier itself.

V1. CONCLUSIONS

This paper has presented the theory of a Neu-
ral Euclidean Classifier, examining its density,
power, and speed advantages as well as its limi-
tations due to offset and reference voltage design
issues. A 5MHz analog to digital converter us-
ing the neural network has been designed and
implemented. The performance of this converter
confirms this paper’s theoretical background for
the Neural Euclidean Classifier.
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