is particularly suited to high precision filtering applications. The
designed transconductor accomplishes 1.2GHz of cutoff fre-
quency, almost 100dB of DC gain and a power consumption of
SmW.
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Interpolating ring VCO with V-to-flinearity
compensation

J.A. McNeill

Indexing terms: Voliage controlled oscillators, Voltage-frequency
convertors

The linearity of interpol ring voltage controlled
oscillators is inherent because the interpolation is linear in delay.
Linearity can be restored with a correction based on the
predictable curvature of an unbalanced Gilbert translinear cell.
Experimental results show ¥-to-f linearity better than 0.2% over a
+10% frequency range about 155MHz.

Introduction: Interpolating ring VCOs have been reported in high
speed phase-locked loop (PLL) applications such as clock and
data recovery [1-3] and frequency synthesis [4]. This type of VCO
has the advantages of being fully integrable with high operating
frequency and reasonable tuning range. One disadvantage that has
been observed [3] is significant V-to-f nonlinearity. This can be
detrimental in a PLL, because the slope of the V-to-f characteristic
influences closed loop performance parameters such as loop band-

width [5].
interpolator

x Vout=XV late
? «(1 =x)Vearly

tmin—  -tint —

Viate

Vout
{x =12)
Fig. 1 Interpolating ring VCO block diagram

Fig. 1 shows a block diagram of an interpolating ring VCO
with inverting delay ¢,,,, noninverting delay #,,,, and an interpola-
tor whose output is the weighted sum of its inputs:

Vout = 2Viate + (1 — 2)Veariy 1)

Fraction x ranges from 0 and 1 and is determined by the VCO
control voltage V.;;. Fig. 1 also shows an idealised timing dia-
gram. If ¢, is of the order of the signal rise time, the linear com-
bination of amplitude is also a linear interpolation in delay [2].
The delay from V.,,,, to V,,, is x't;,,, and the VCO frequency is

1 1
I =7 = S v at) @

In previous work x has been linearly related to V.r,. For exam-
ple, the interpolator in [2] is shown in Fig. 2. The contribution to
Vour of V.1, and V,,,, is determined by the tail currents Z,,,;, and
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Iigre Of Q14/Qy5 and Q,/Qsp. Degenerated pair Q,,/Qsp apportions
Iggto 1, 01 Iy,
Ligte = zlgp 3)
Ieorty = (1~ 2)lgp (4)
assuming transistor B — co. Thus x is linear in Vg :
I Ve 1
2= late _ CTL 1 ()
Igg  2-Ipg-Rp 2
The reason for the inherent ¥-to-f nonlinearity is now apparent
from egns. 2 and 5: V. causes a linear change in x and a linear
interpolation in delay time; but frequency is the inverse of time.
The nonlinearity of eqn. 2 worsens rapidly as tuning range
increases [1].

T = Vee AjJ
bl
{ "—L i
+ Q + QA QB o +
thec QZA—lq:L—I Vearly J_l _OVout
lllcte l learly,
=x[EE =0 -X)gg
* Q3a Rp Rp QB
ver,
e OO
(i> VEE
Boia

¥ig. 2 Interpolating circuit (after {2] Fig. 3)

+
veTL

Iec:rly
=(1-vge

Fig. 3 Translinear circuit for nonlinearity compensation

Linearising V-to-f characteristic: The linearising technique is
shown in Fig. 3. The circuit uses the Gilbert translinear principle
[6] in the configuration of Q,,/Q.s and Qs,/Qss, With Qs,/Qss emit-
ter areas unbalanced by a factor A. The input to the cell is the cur-
rent pair I, * and I,,,’. As in eqns. 3 and 4, Q,,/Q;; apportions
Igf to I, or I, "

Liate =vIgp (6)

Lory =1~ Mg ()

As in eqn. S5, the apportioning fraction v is linear in Vp,. This
pair of currents flows through diode-connected transistors Q,,/
Q.. The resulting voltage is applied to Qs,/Qsz, which apportions
Ig; to output currents I,,,,, and I,,,,. These are used as the tail cur-
rents for Q,,/0,5 and Q,,/Q,; in the interpolator of Fig. 2. Fre-
quency as a function of x is still governed by eqns. 2-4.
Compensation for the nonlinearity of eqn. 2 is achieved with the
unbalance A in the emitter areas of Qs, and Qss, which causes an
opposite curvature in the v-to-x characteristic of the translinear
cell. Gilbert shows that the output fraction x is determined by the
input fraction v and the imbalance ratio A:

v
Sl PN ®)
Substituting eqn. 8 into eqn. 2 gives frequency f as a function of v:
1+(A-1)
f= G- ®

2(tmin + [(A = Dtmin + Mint]v)
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To make f linear in v, choose A so that the bracketed coefficient of
v in the denominator is zero:

[(A = Dtmin + Atine] =0 (10)
which is satisfied by
i
A= T 11
tmin + tint (n

Then substituting into eqn. 9 gives the V-to-f characteristic

1 tint ) ]
= 1-{—m}v 12
f 2t min [ (tmin + tint (12)

which is linear in V., because v is linear in V.

Experimental results: The circuit of Fig. 3 was used in an interpo-
lating ring VCO with a centre frequency of 155MHz. The circuit
was designed for 1, = 2t,,,, which gives a value of A = 0.67 from
eqn. 11. Simulation showed that an imbalance of A = 0.63 gave
slightly better linearity compensation. This is because of a small
nonlinearity in the V;;-to-delay characteristic not accounted for
in eqn. 2.
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Fig. 4 Measured V-to-f linearity

O measured frequency with linearity compensation
— — - — ideal linear V-to-f
—O— simulated frequency for uncompensated VCO

Fig. 4 shows the measured V-to-f characteristic of the with line-
arity compensation. Also shown is the simulated V-to-f of the
uncompensated VCO; its nonlinearity is obvious by comparison.
Fig. 5 shows the measured nonlinearity, which is less than 0.2% of
the centre frequency over a £10% tuning range. The compensation
is stable over temperature, because ¢,,, #,,, tend to track, and the v-
to-x characteristic of the translinear cell is temperature independ-
ent [6].

04 o
°\° J o
802
o ] a
200 °o ® o
H ]
i a ° :
=02
B o
_0.4_
140 150 160 170
frequency, MHz [Eoerg)

Fig. 5 Linearity error against frequency

Conclusion: The inherent nonlinearity of the interpolating ring
oscillator can be compensated out in a stable, predictable manner.
Experimental results show a control characteristic linear to within
0.2% over a +10% frequency range.
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Resistance of an n-cube

J.J. Narraway

Indexing terms: Circuit theory, Graph theory

The resistance into any pair of vertices in an n-cube composed of
1€ resistors is one of » distinct numbers between zero and unity.
Exact explicit expressions are given for the extrernal vertex pair
resistance values. As n becomes large all vertex pair resistances
approach the same functional value.

The n-di ional binary hypercube, or n-cube, occupies a promi-
nent place in large scale computational applications both as a mul-
tiprocessor architecture and as a model structure in physical
problems [1]. Multiprocessor systems are expected to appear con-
taining over one million processors. If these were arranged in an
n-cube positioned at the vertices in the cube, then this would indi-
cate a dimension number 7 = 20 at least. Apart from computa-
tional hardware considerations, the n-cube appears with arbitrarily
large dimension in topics in coding theory and in a variety of the-
oretical investigations. In particular, certain edge occurrence prob-
abilities in random trees or paths may be expressed in terms of
electrical resistances across single edges in a network of 1Q resis-
tors N having the same graph G as the system under consideration
{2]. An application of this which is of considerable present concern
is that of fault diagnosis in large systems [3]. The specific topic of
interest here is the resistance between any pair of vertices in such a
network N with graph G an n-cube.

The distance, or separation, between two vertices i, j in a graph
G is the length in edges of a path of minimum length between the
vertices / and j, and the diameter of a graph is the largest such dis-
tance over all the vertex pairs in G. Paths up to one diameter in
length have application in minimum path length data routing in
communication systems, including multiprocessor systems. The
graph G used below will be that of an n-cube and use is made of
an associated electrical network N having the same graph G and
being constructed using a 1Q resistor at the position of each edge
in G.

P1: An n-cube has diameter n. For any vertex i being given, there
is exactly one other vertex at a distance of one diameter from
i. Between two vertices in G separated by one diameter, there
are exactly n! distinct paths each of length » edges. The maxi-
mum number of these paths which can be edge-disjoint is n
and there is at least one subset containing exactly n paths
which are edge-disjoint.

P2: Choose any minimum length path across one diameter in G
which has one extremal vertex i and number the other n verti-
ces in this path i+1, i+2, ..., i+n. If the resistance seen into
the port in the network N formed by vertices i and j is written
R;;(n) then the R;; are such that R, < R, i for i+l <j<i+n-1.
This sequence of n resistance values R, is numerically the
same whichever minimum length path is chosen between any
vertex pair separated by one diameter. For n > 2, all the R,
are R; < 1.
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