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Abstract—For long-channel MOSFETs, the power spectral
density of wideband noise in the drain current is predicted
by an expression derived from thermal noise in the MOSFET
channel. For short channel MOSFETs, observed noise can be
much higher than predicted from thermal noise analysis of long
channel MOSFETs. While the cause of this excess noise is the
subject of some controversy, it can be understood by considering
the fundamental difference between shot noise (carrier motions
are independent events) and thermal noise (carrier motions are
dependent due to thermal equilibration). This paper reviews the
literature on noise in short channel MOSFETs and shows that
the increased noise can be seen as resulting from the current
noise approaching a shot noise limit as carrier transit time in the
MOSFET channel becomes so small that thermal equilibration
does not have time to occur.

Index Terms - Thermal noise, shot noise, device noise.

I. INTRODUCTION

Designers of analog and mixed-signal integrated circuits
face both challenges and opportunities as CMOS device di-
mensions enter the nanoscale region. For mixed-signal design,
scaling offers the possibility of increased speed but also
difficulties associated with reduced supply voltage, degraded
transistor characteristics, and increased variability. An addi-
tional issue in short channel devices is an increase in wideband
noise over the noise observed in long-channel devices.

The purpose of this paper is to review fundamental noise
sources of interest to circuit designers, bringing in some results
from statistical physics that may be less familiar to design
engineers. Sections II and III review shot noise and thermal
noise, respectively. The insights from each of these types of
noise are applied to the MOSFET in section IV.

II. SHOT NOISE

Figure 1 shows an idealized physical configuration for
analyzing shot noise. Consider a volume defined by two
conductive plates a and b with area A separated by a distance
L. At random times t1a, t2a, . . . an electron leaves plate a
and travels at constant velocity v in the positive x direction
toward plate b, arriving after a transit time delay τT at plate
b at times t1b, t2b, . . .. The situation is roughly analogous to
the collection of carriers at the reverse-biased base-collector
junction of a bipolar transistor [1], [2] or the motion of
carriers in a vacuum tube [3]–[5]. The key idealization is that
current flows in discrete charges which undergo only a transit
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Fig. 1. Idealized physical configuration for analyzing shot noise.

time delay, and are not scattered or otherwise impeded by
interaction with any medium or with other carriers. 1

We now consider the question: What current iM (t) would be
measured by an ideal ammeter connected in series with this
volume, as shown in Fig. 1? Considering only the passage
of charge at plate a, one is tempted to say that the current
ia(t) would be a series of impulses, with area equal to the
electron charge qe, at times t1a, t2a, . . ., and that this must be
the current iM (t). However, applying the same argument at
plate b gives a different current ib(t). Which is correct?

A. Ramo-Shockley Theorem

The resolution of this apparent paradox is provided by the
Ramo-Shockley theorem [3], [4], which states that the current
measured in an external conductor from a charge qe moving
at velocity v between large (A � L2) plates separated by a
distance L is given by

i =
qev

L
(1)

The reason that the external ammeter “knows” about the
electron in transit between the plates is that the electric field
on the plates is changing as the electron is moving. The
changing electric field produces a displacement current which
constitutes the external iM (t) while the electron is in motion.

1The cases of nonuniform velocity and interaction between carriers can be
addressed using the techniques of [3]–[5]
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Since the transit time τT is related to the velocity and
distance by v = L/τT , we can rewrite (1) as

i =
qe
τT

(2)

which is shown for iM (t) in Fig. 1.

B. Noise Description

The current iM (t) can be described as an average DC value
plus a random component due to the random occurrences of
the charge carrying events. To describe the situation accu-
rately, we need to be more precise about the “random” times
t1a, t2a, . . . referred to in Fig. 1. For the Poisson random
process [6], [7], the electron transits are independent events
characterized by a parameter λ, which has units of 1/time,
and is the expected number of arrivals per unit time. For long
intervals of time ∆T � 1/λ, the number of arrivals N∆T has
an expected average value E[N∆T ] given by

E[N∆T ] = λ∆T (3)

and for short intervals of time δt� 1/λ, the probability of
an electron arrival occurring is given by

P{electron in δt} = λδt (4)

To determine the average current IDC over an interval
of time ∆T , we use (3) in the definition of DC current
IDC = ∆Q/∆T , where ∆Q is the average amount of charge
transferred in time interval ∆T :

IDC =
∆Q
∆T

=
qeN∆T

∆T
=
qeλ∆T

∆T
= λqe (5)

To describe the random component of iM (t), we may work
in either the time domain (autocorrelation) or the frequency
domain (power spectral density). For the waveform of Fig. 1,
the autocorrelation [6], [8] is as shown in Fig. 2a.

By the Wiener-Khinchine theorem [6], [7], the Fourier
transform of the autocorrelation gives the two-sided power
spectral density (p.s.d.)

Sxx(f) = λq2
e

sin2(πfτT )
(πfτT )2

(6)

which is shown in Fig. 2b.
For frequencies f � 1/τT , the power spectral density

approaches a constant value λq2
e . Converting to a single-sided

power spectral density and substituting for the DC current
from (5) gives a shot noise power spectral density

Sshot(f) = 2qeIDC (7)

which is shown in Fig. 2c. The assumption of “white”
(independent of frequency) power spectral density is valid for
frequencies f � 1/τT .

Some points to notice:

• The discrete nature of charge is essential
• The carrier transits are independent events
• The charge carrying particles do not interact with each

other or with any medium
• Temperature does not enter into the analysis at all

III. THERMAL NOISE

Figure 3a shows an idealized physical configuration for
analyzing thermal noise. Consider a volume defined by two
conductive plates a and b with area A separated by a distance
L. The enclosed volume is filled with many electrons, with
an average carrier concentration of n mobile electrons per
unit volume. Unlike the case of Fig. 1, the carriers undergo
scattering collisions, exchanging energy and momentum with
the medium. The situation is roughly analogous to the motion
of carriers in a semiconductor or resistor [1].

As the carriers move about due to random thermal motion,
the ideal external ammeter will measure a current iM (t). What
are the statistical properties of the current iM (t)?

Note that resistor thermal noise can be explained without
any reference to individual charge carriers; for example,
Nyquist’s original paper [9] derives the thermal noise den-
sity from considering modes of energy storage on an ideal
transmission line. In this section we explicitly consider the
motion of carriers to re-derive the thermal noise expression
from fundamental principles of thermodynamics.
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A. Thermodynamics: Equipartition Principle

According to the equipartition theorem of thermodynamics
[9], for a system in thermodynamic equilibrium, each inde-
pendent energy storage mode will have an average energy
of kT/2, in which Boltzmann’s constant k = 1.38066 ×
10−23J/K and T is absolute temperature. For the electrons
in Fig. 3, the velocity vector x can in general point in
any direction; each component in the x, y, and z directions
represents an independent energy storage mode in the kinetic
energy of the electron. Since only the vx component will
contribute to the external current iM (t), we consider only vx.
By the equipartition principle, we equate the average kinetic
energy in the x direction to the thermal energy of kT/2:

1
2
mnv

2
x =

1
2
kT (8)

v2
x =

kT

mn
(9)

using the effective mass mn so we can treat the electron as
a classical particle. At T = 300K, mn for conductivity of
electrons in silicon is

mn = 0.26m0 (10)

where m0 = 0.91094× 10−34kg is the electron rest mass [1].
At T = 300K we have

v2
x =

(1.38066× 10−23J/K)(300K)
0.26(0.91094× 10−30kg)

(11)

v2
x ≈ (1.0× 107cm/sec)2 ≈ (0.1µm/psec)2 (12)

As the electron wanders around through the medium, it
undergoes collisions and is randomly scattered. Adopting the
nomenclature of [1], the average time between collisions is
called the “mean free time” τc and the average distance
between collisions is called the “mean free path” lc. The
average velocity can be used to relate the mean free path and
the mean free time τc:

v2
x =

l2c
τ2
c

(13)

Typical values for a semiconductor are of order 1psec for τc
and 0.1µm for lc [1].

B. Derivation of Thermal Noise

To derive an expression for thermal noise density in the
system of Fig. 3a, we subdivide the volume into “slices” of
length lc along the x-axis as shown in Fig. 3b. Assuming an
average uniform carrier concentration of n carriers per unit
volume, the number of carriers in the slice is given by

Nc = nAlc (14)

Adopting an approach similar to that of [10], we assume that
during one mean free time τc, on average half of these carriers
will exit this volume in the positive-x direction, and half
will exit in the opposite direction. Thus the average currents
IAV G+ and IAV G− are equal in magnitude and opposite in
sign, and using (14) are given by

IAV G+ = IAV G− = qe
Nc/2
τc

=
qenAlc

2τc
(15)

Note that this is only the average behavior; due to the
random nature of the individual carrier velocities, each of the
currents will have a shot noise component is+ and is− as
shown in Fig. 3c. Applying (7) to (15) gives for the shot noise
p.s.d.

i2s+ = 2qeIAV G+ =
q2
enAlc
τc

(16)

Note that is− = −is+, since every electron that does not
exit one side must exit the other side. Thus the net current
contributed by the slice is is = 2is+ as shown in Fig. 3d. The
total shot noise densities add in correlated fashion

i2s = 4i2s+ =
4q2

enAlc
τc

(17)

This is the p.s.d. of the current fluctuation in the slice
with resistance ∆R; however, only a fraction of this current
variation will be seen at the ideal ammeter in the p.s.d. im(s)

due to the current divider between ∆R (the resistance of
the slice) and resistances R1 and R2 (the resistances of the
material above and below the slice). The total resistance is
R = R1 + ∆R+R2; in the limit as ∆R� R



im =
∆R
R

is (18)

The current divider fraction ∆R/R is related to the lengths
lc and L by

∆R
R

=
lc
L

(19)

so using (19) and (17) in (18) gives the contribution of the
∆R slice to the current noise density seen at im(s) as

i2m(s) =
(
lc
L

)2 4q2
enAlc
τc

(20)

The contributions from each “slice” are independent and
will add in uncorrelated fashion. Since there are a total of
L/lc slices, the total current noise density seen by im will be

i2m =
(
L

lc

) (
lc
L

)2 4q2
enAl

2
c

Lτc
(21)

To put (21) in a form that relates to the total resistance R,
we first multiply the numerator and denominator by τc:

i2m =
4q2

enAτcl
2
c

Lτ2
c

(22)

From (8) and (13) we have

l2c
τ2
c

= v2
x =

kT

mn
(23)

Substituting from (23) into (22) gives

i2m =
4q2

enAτckT

Lmn
(24)

In [1], it is shown that the mobility µ is given by

µ =
qeτc
mn

(25)

Substituting (25) into (24) gives

i2m =
4qenµAkT

L
(26)

In [1], it is also shown that the the resistance of the structure
in Fig. 3a is given by

R =
L

qenµA
(27)

Substituting (27) into (26) gives

i2m =
4kT
R

= Sthermal(f) (28)

which is the familiar result for wideband thermal noise of
a resistor. In this case, with analogy to (6) and (7), the white
p.s.d. assumption is valid for frequencies f � 1/τc.

Some points to notice:
• The individual behavior of carriers is not essential to

thermal noise; behavior is described by the aggregate
result of many carrier motions
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Fig. 4. Carrier flow, potential energy for general MOSFET.

• The charge carrying particles interact with the medium in
a dissipative manner through scattering, and thereby are
in thermal equilibrium

• Temperature is important in the analysis, determining the
average kinetic energy of the carriers

IV. NOISE IN MOSFETS

Figure 4 shows a conceptual view of an n-channel MOSFET,
operating in saturation. A cross-sectional view of the channel
is shown, with inversion layer between the source and drain
formed by the gate voltage vG. Also shown is a conceptual plot
of the electron potential energy along the source-drain channel
[11], [12]. We consider only effects relevant to wideband
drain current noise, not 1/f noise or induced gate noise [11].
Although we will consider velocity saturation, we will neglect
the carrier multiplication role of “hot” electrons since the
effect on wideband noise is not significant [13], [14].

As described in [1], [10]–[12] there are three types of carrier
motion as an electron moves from source to drain:

1) Injection over potential barrier into channel: For a carrier
to enter the source-drain channel, it must have enough
energy to overcome the potential barrier (shown in Fig.
4 at x = 0) at the source-channel p-n junction. The
height of the barrier depends on several factors including
the potential profile in the channel as well as other
dimensional effects not represented in the simple picture
of Fig. 4.

2) Low field motion according to drift: At the source
end of the channel (0 < x < L2−3), the x-direction
component of the electric field is below the critical
value at which velocity saturation occurs [1], [11]. The



carrier undergoes scattering collisions and exchanges
energy with the lattice, is in thermal equilibrium with
its environment, and its average velocity is adequately
described by the mobility relationship. In this region, the
thermal noise relationships of section III apply.

3) High field motion with velocity saturation: At the drain
end of the channel (L2−3 < x < L) the x-direction
component of the electric field exceeds its critical value
and velocity saturation occurs.

As described in [13], [14], [16], carrier motion in the velocity
saturated region (3) will not contribute appreciably to noise:
since the velocity is limited to vsat, the carriers do not respond
to any external influence and the statistics of carrier arrival at
the drain are determined by behavior in regions (1) and (2).

A. Regions of MOSFET Drain Current Noise

A key consideration in understanding drain current noise
for the MOSFET in saturation is the size of the L2−3 length
relative to the mean free path lc:

1) L2−3 � lc: If the low-field region of the channel is long
compared to the mean free path lc, then noise is analyzed by
breaking the inversion layer into small segments, treating each
as a resistor with thermal noise, and integrating to obtain the
total noise of the drain current [15]. In saturation,

i2nd = 4γkTgm (29)

where the factor γ = 2/3 for the long channel case results
from the integration over the channel length and takes into
account the influence of the gate voltage on charge density
and carrier motion in the inversion layer. A key assumption
underlying the derivation of (29) is that the carriers are
behaving in resistive fashion. When this is not the case, it
makes sense that observed noise behavior will deviate from
the prediction of (29).

2) L2−3 ≤ lc: If the low-field region of the channel is
short compared to the mean free path lc, then the assumptions
underlying (29) are not valid: Most carriers will not undergo
any scattering collisions, the carriers are not in the channel
for a sufficient time to reach thermal equilibrium, and carrier
behavior will tend more toward the shot noise case described
in section II. Depending on the statistics of carrier entry at
(1) in Fig. 4, the drain current may show full shot noise as is
known to occur in weak inversion operation [10], [11] or the
shot noise may be partially suppressed [5], [18].

B. Analogy for Shot Noise Suppression

Figure 5 shows an analogy to consider for understanding the
concept of shot noise suppression. Figure 5a shows a bipolar
transistor with fixed vBE bias. The output current noise i2no

will show the full shot noise i2nc of the collector current,
as carriers are randomly injected from the emitter into the
base and then swept into the collector [2]. Figure 5b shows
a bipolar transistor with emitter degneration. We assume the
base voltage bias vB2 is adjusted to maintain the same DC
collector current. With BJT transconductance gm, small-signal
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vBE vBE

(a) (b)

ino

VB1
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ino

Fig. 5. Analogy for shot noise suppression: (a) BJT with fixed bias (b) BJT
with emitter degeneration.

analysis for this case shows that the output current noise is
given by

i2no =
(

1
1 + gmRE

)2

i2nc +
(

gmRE

1 + gmRE

)2

i2nr (30)

showing that the collector current shot noise component inc

is suppressed by a factor 1/(1 + gmRE). Intuitively, this sup-
pression comes about through the negative feedback provided
by the degeneration resistor: If there are (randomly) more
carrier injections due to shot noise and the transistor current
increases, the voltage drop across RE increases, reducing
vBE , reducing the probability of future injection events and
counteracting the current increase. As can be seen from (30),
larger RE provides more feedback and greater suppression of
shot noise.

The analogous processes in the MOSFET are the injection
of carriers from the source into the channel at (1) in Fig.
4, and the interaction of the carriers in the resistive portion
of the channel at (2) in Fig. 4. As described in [18], if the
carriers are in the resistive portion of the channel for an
appreciable time, their interaction affects the potential profile
of the channel shown in Fig. 4, and the probability of future
carrier injections will be affected in a way that suppresses
the randomness of carrier injection from the source. If the
carriers are in the channel for a short period of time, and do
not interact with the medium in resistive fashion, they will
have a negligible effect on the potential profile shown in Fig.
4. Future carrier injections will tend to be independent events,
leading to shot noise limited behavior. Indeed, as described
in [18], the situation is similar to the ballistic MOSFET [12],
[17] in which device operation is determined mainly by the
injection of carriers from the source across the source-channel
potential barrier.

V. CONCLUSION

Noise density expressions were derived from fundamental
considerations for shot noise and thermal noise. In general,
shot noise is associated with current flow in the form of carrier



motion as individual independent events, whereas thermal
noise in a resistive medium is associated with carrier inter-
action through scattering collisions and thermal equilibrium.
The key assumptions underlying derivation of noise for long-
channel MOSFETs are related to to the resistive behavior
of carriers; however, these assumptions are violated in a
MOSFET when carrier velocity approaches thermal velocity,
effective channel length is less than the mean free path typ-
ically covered between scattering collisions, or carrier transit
time is less than the time required for thermal equilibration.
In these cases observed drain noise current density is greater
than the thermal noise prediction, increasing toward a limiting
value set by shot noise.
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