Bonding model

- Lines represent valence electrons
- Silicon
 - 4 valence electrons

Pure (Intrinsic) Silicon, T = 0 °K (Absolute Zero)

All valence electrons tightly bound

Pure Silicon, T = 300 °K (Room Temperature)

Thermal energy frees some valence electrons

Pure Silicon, T = 300 °K (Room Temperature)

- Thermal energy frees some valence electrons
 - "electron": mobile negative charge
 - Missing electrons ("holes") behaves as mobile positive charge
- Equal number of holes, electrons
- Relatively poor conductor

Doping

- Intentionally introduce impurity atoms to unbalance number of holes, electrons
- Adjacent columns in periodic table

Donor: Phosphorous

- Donates extra electron
- More mobile <u>n</u>egative charges: n-type

Acceptor: Boron

- Vacancy ("hole") that can accept an electron
- More mobile positive charges: p-type

Caution

- Entire semiconductor is electrically neutral
- Donor: extra proton in nucleus
- Acceptor: missing proton in nucleus (for both, <u>relative to Si</u>)