

MOS BJT Comparison

Notes:

<u>Speed</u>

W_B, L are critical dimensions for improving speed performance

Note exponent of 2 in ΔT equation indicates that improvement goes as factor squared; meaning there are two reasons speed improves:

1) Shorter distance for carrier to travel

2) More "push" (steeper diffusion gradient for BJT, higher E field for MOSFET)

Factors in MOS - BJT speed performance:

1) Bulk mobility (BJT) always better than surface mobility (MOSFET)

- 2) Reducing critical dimension involves different process considerations
- 3) Trying to increase MOSFET speed by increasing V_{GS} - V_t has two problems:
 - reduces transconductance
 - carrier velocity doesn't increase as much as expected due to velocity saturation

Small signal transconductance g _m :			
$g_m = \frac{I_C}{V_T}$	$g_m = \frac{I_D}{\left(V_{GS} - V_t\right)/2}$		

Why BJT transconductance will always be better for roughly similar bias currents:

Thermal voltage V_T is less than $(V_{GS}-V_t)$; trying to reduce $V_{GS}-V_t$ below ~ 100mV causes MOSFET to enter subthreshold (weak inversion) region of operation

Advantages of MOS:

Near ∞ input resistance looking into gate vs. base current for BJT (better buffer on input side) Lower noise for high R_s signal sources

Better analog switch; truly ohmic at origin of V_{DS} - I_D plot (sample & hold)

Compatible with digital CMOS (process cost advantage)

Comes out of non-active operating region more quickly (BJT slow out of saturation) More robust current sources (gentler "crash" than BJT into saturation)

Advantages of BJT

More speed, transconductance per amount of bias current

Lower noise for low R_s signal sources

Higher intrinsic gain for actively loaded stage (better Early voltage)

Lower output resistance at emitter vs. source of MOSFET (better buffer on output side)

"Closer" to fundamental physics (e.g. bandgap voltage reference)

Follows exponential model over 5 - 8 orders of magnitude (analog computation; multipliers) Higher output resistance current sources

npn Bipolar Transistor			n-channel MOS Transistor		
Region	V _{BE}	V _{BC}	Region	V _{GS}	V_{GD}
Cutoff Forward Active Reverse Active Saturation	$< V_{BE(\text{on})}$ $\geq V_{BE(\text{on})}$ $< V_{BE(\text{on})}$ $\geq V_{BE(\text{on})}$	$< V_{BC(\text{on})} < V_{BC(\text{on})} \geq V_{BC(\text{on})} \geq V_{BC(\text{on})}$	Cutoff Saturation(Active) Saturation(Active) Triode		

Operating regions: