Review: Analysis Techniques

- Nodal Analysis
- KVL, KCL
- Thevenin's Theorem

Keys:

- FIRST know what you're looking for
- THEN write simplest equations to get you there

Nodal Analysis

- Voltage always relative (defined as a difference)
- Nomenclature / Conventions
 - V_A voltage at node A referenced to ground
 - $-V_{BC} = V_B V_C$ voltage drop from B to C

KVL: Kirchhoff's Voltage Law

- Sum of voltage drops around a loop = 0
- Voltage drop equations depend on element:
 - **Ohm's law (R, L, C)**
 - Value of voltage sources
 - Caution: ideal current source can have any voltage
 - Nonlinear model equations (diode, MOSFET, etc.)

KVL Analogy: What goes up must come down

Formal KVL Loop

KVL Path

• Simpler equation: don't always need entire loop

KVL Equations

• Equations not unique: choose easier equation

More terms, but V_{AG} and V_{EG} are (known) sources

KVL "Jump"

• Define new voltage difference if appropriate

KCL: Kirchhoff's Current Law

• Sum of currents at a node = 0

$$I_1 - I_2 - I_3 + I_4 = 0$$

• KCL:

What goes in must come out

$$I_1 + I_4 = I_2 + I_3$$

KCL Trouble

Example: Find I_{10}

"Supernode": What goes in must come out

Thevenin's Theorem

• Simplify linear network with equivalent circuit

