ECE 524 Advanced Analog IC Design

John A. McNeill

Worcester Polytechnic Institute

Fall 2014

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへで

1/81

ECE524 Course Overview (I)

Week of	Mo	Reading					
Sep 1	1	Semiconductor Physics Review	1.1,2				
Son 8	2	Bipolar Transistor	1.3				
Jep 0	3	IC manufacturing technology for BJT	2.1-7				
Son 15	4	SPICE modeling of BJT	1.4, A.2.1				
Jeb 12	5	BJT Modeling for Amplifier Design	1.3,4				
Sam 22	6	BJT Amplifiers (1 Transistor)	3.1-3				
Jep 22	7	BJT Amplifiers (2 Transistor)	3.4				
		Quiz 1					
Sep 29	8	Differential Pair	3.5				
Oct 6	9	Current Sources	4.1,2; A.4.1				
001 0	10	Active Loads	4.3				
O_{ct} 13	11	Output Stages	5.1-4				
00115	12	Biasing	4.4				
	Quiz 2						
Oct 20 OCTOBER BREAK							

ECE524 Course Overview (II)

Week of	Moo	dule Title	Reading		
Oct 27	13	Basic Op-Amp Design	6.1,2,8		
Nov 3	14	Frequency response issues	7.1-5		
Nov 10	15	Feedback	8.1-3		
100/10	16	Op-Amp Stability	9.1-4,6		
			1.5-9; 2.8-11; 3.3-5		
Nov 17	17	MOSFET Op-Amp Design	4.2,4; A.4.1; 6.3-7,		
			9.4,6		
		Quiz 3			
Nov 24		THANKSGIVING B	REAK		
Dec 1	18	Fully Differential Op-amps	12.1-6		
Deci	19	Project Topics	TBD		
Dec 8	20	Advanced / Optional Topics	TBD		
Dec 15	21	Advanced / Optional Topics	TBD		

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

Chemistry Review

Model of atom (ridiculously oversimplified):

Periodic Table

	METALS										NONME	TALS						
PERIODS	IA																VII A	0
<u></u>	1.0079																1.0070	4.00280
1	H [1]																HU	He[2]
0	1	II A											III A	IV A	V A	VI A	1	2
	6.941	9.01218											10.81	12,011	14.0067	15,9994	18.9984	20.179
2	Li [3]	Be[4]			· T	RANSI	TION	METAI	s				R[a]	C LOJ	NU	OF	E.Lal	Nel ^m J
2	1	2	,									i i	20.0015	129.086	20.0728	33.04	76 452	36.049
	22.9898	24.305							VIII				A 10131	56 F M1	P [15]	S [16]	CUDU	A - [18]
- 3	Naluj	Wigtwi	HIB	IV B	VВ	VIB	VILB		~ <u>†</u> ~		IВ	пв	3	4	5	6	7	8
2, 5	00.000	40.00	44.0550	47.00	50.0414	51 998	54 9380	55.847	56,9332	58.71	63.548	65.38	69.72	72.59	74.9216	78.96	79.904	83.80
4	39.096	10.00 Col(20)	Se [2]]	T; [223	V [2]	C ₇ [24]	Mn[25]	Fe[8]	Coft	Ni [28]	Cul 29]	Zn[30]	Ga[31]	Ge[32]	As[33]	Se[34]	Br[35]	Kr(×)
2.8	B, 1	8,2	9,2	10, 2	11.2	13, 1	13, 2	14, 2	15, 2	16, 2	18, 1	1B, 2	18, 3	18, 4	18, 5	18,6	18, 7	18, 8
	85.4678	87,62	88.9059	91.22	92.9064	95.84	98.9062	101.07	102.9055	106.4	107.868	112.40	114.82	118.69	121.75	127.60	126.9045	131,30
5	Rb[37]	Sr [38]	Y [39]	$Z_{7}[40]$	NEU	Mo[42]	Tc[43]	Ru[4]	Rh[#]	Pd[#3	$A_{g}[0]$	C I[II]	[n[49]	Sn[50]	Sb[51]	Te[\$2]	I [2]	Xe[54]
2, 8, 18	B, 1	8, 2	9, 2	10, 2	12, 1	13, 1	14, 1	15, 1	16.1	18	18, 1	18, 2	16, 3	18, 4	1B, 5	18, 6	18,7	18, 8
	132.9054	137.34	[57-71]	178.49	180.9479	163.85	186,2	190.2	192.22	195.00	198.9665	200.59	204.37	207.2	208.9804	(210)	(210)	(222)
6	Cs [55]	Ba[%)	* * -	Hf[72]	Tu[71]	W[H]	Ref 15)	Os[76]] [r]]	Pt [78]	Au[⊅]	[[g[80]	T1[81]	PP[8]	Bi [#3]	Po[H]	At[6]	Rn[B]
2, 8, 18	18, 8, 1	18, 6, 2		32, 10, 2	32, 11, 2	32, 12, 2	32, 13, 2	32, 14, 2	32, 15, 2	32, 17, 1	32, 18, 1	32, 18, 2	32. 18, 3	32, 18, 4	32, 18, 5	32, 18, 6	32, 18, 7	32, 18, 8
	(223)	(228.0254	[89-103]															
7	Fr [*]	Ra[88]	1	[104]	[105]	[106]	1107	[TOR]										
2,8,18,32	15, 8, 1	10, 8, 2		əz. 10, 2	34, 11, 2				1									

	138,9055	140.12	140.9077	144.24	(145)	150.4	151.96	157.25	1589254	162.50	164.9304	167.26	168,9342	173.04	174.87
 LANTHANIDE 	La[57]	Ce ^[S]	Pr(391	Nd[60]	Pm[61]	Sm[87]	Eu(#)	Cd(#]	Th[65]	$D_{Y}[66]$	Ho[87]	Er[68]	Tm[69]	Υb(10)	Lu[11]
SERIES	18, 9, 2	20, 8, 2	21, 8, 2	22, B, 2	23, 8, 2	24, 8, 2	25, 8, 2	25, 9, 2	27, 8, 2	28, 6, 2	29, 8, 2	30, 8, 2	31, 8, 2	32.8.2	32, 9, 2
	(227)	232.0381	231/0359	238.029	237.0482	(242)	(243)	(245)	(245)	(248)	(253)	(254)	(256)	(253)	(257)
† ACTINIDE SERIES	Ae[8]	ТЪ(90]	$P_{a}(S)$	U [92]	Np[93]	Pu[94]	Am[%]	Cm(%)	Bk[*]	Cf [98]	Es(99)	Fm[IØ]	Md[101]	Na(112)	Lr (163)
	18, 9, 2	18, 1D, 2	28, 9, 2	21, 9, 2	23, 8, 2	24, 8, 2	25, 8, 2	25, 9, Z	Z6, 9, 2	2B, 6, 2	29, 8, 2	30, 8, 2	31, B, 2	32. 8, 2	32, 9, 2

Source: General Chemistry, ISBN 0-669-63362-3

Types of Materials

Conductor

- Each atom: One or more valence e- not used in bond
- "Sea of electrons"
- Small applied V ⇒ Lots of charge moving ⇒ Large I ⇒ Low resistance

イロト 不得下 イヨト イヨト 二日

8/81

Insulator

- All valence e- tightly bound
- Applied V ⇒Little charge moving ⇒ Small I ⇒High resistance

Semiconductor

"In between"

Bonding Model

- Lines represent valence electrons
- Silicon
 - 4 valence electrons

"Intrinsic" (pure) Silicon, T=0 K (Absolute zero)

All valence electrons tightly bound

10/81

"Intrinsic" (pure) Silicon, T=300 K (Room temperature)

11/81

Charge carriers in semiconductor

- Electrons
 - Mobile electrons not in covalent bond
 - Concentration symbol: n carrier/cm³
- Holes
 - Absence of an electron in valence band
 - Behaves like a mobile positive charge
 - Concentration symbol: p carrier/cm³

Intrinsic semiconductor: n = p

▶ Pure material: hole, electron concentrations must be equal

- Mobile electrons, holes created in pairs
- Relatively poor conductor

Intrinsic carrier concentration

- ▶ Symbol: *n_i* carrier/cm³
- Different for different semiconductors
- Silicon at T=300 K : n_i 1.0E+10 carrier/cm³
- STRONGLY Temperature dependent!

Summary: Bonding model, charge carriers

- Charge carriers in semiconductor
 - Electrons n
 - Holes p
 - Concentration units: carriers / cm³
 - Charge equal to electron charge $\pm q_e = 1.6$ E-19 coul
- Intrinsic (pure) semiconductor
 - Hole, electron concentrations equal

$$n = p = n_i$$

n_i STRONGLY Temperature dependent!

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

Doping

- ▶ Problem: Equal number of holes, electrons n = p is boring
- "Doping": Intentional introduction of impurity atoms
- ▶ Purpose: Unbalance number of holes electrons $n \neq p$
- Use atoms from adjacent columns in periodic table

"Donor" impurity (Example: Phosphorous)

- Donates extra electron: mobile
- Also extra proton: Fixed +positive charge
- More mobile <u>n</u>egative charges: n-type

"Acceptor" impurity (Example: Boron)

- Vacancy ("hole") that can accept an electron
- Also missing proton: Fixed negative charge
- More mobile positive charges: p-type

Terminology

Dopant atom concentration

- Donor: N_D atoms/cm³
- Acceptor: N_A atoms/cm³

CAUTION!

- Entire semiconductor is electrically neutral
- Donor: Extra proton in nucleus relative to Si
- Acceptor: Missing proton in nucleus relative to Si
- Only *mobile* charge is unbalanced

"Majority carrier concentration"

- Assumption: Each dopant atom contributes one mobile carrier
- Donor doped: Electrons are majority carrier n = N_D
- Acceptor doped: Holes are majority carrier
 p = N_A
- Typical doping densities 1.0E+15 to 1E+22 atom/cm³
 Much greater than n_i, "swamp out" intrinsic concentration
- ▶ NOTE: *N_A*, *N_D* NOT temperature dependent! Determined by introduction of impurity atoms in manufacturing process, then fixed over time.

What about concentration of "other" carrier?

Minority carrier concentration

Example: Donor doped region of semiconductor

- Donor: N_D atoms/cm³
- Increases mobile electron concentration: $n \uparrow \uparrow$
- Some of extra mobile electrons "fill in" holes
- "Recombination"
- Decreases mobile hole concentration: $p \Downarrow$

"np product relationship": $np = n_i^2$

- ► For semiconductor at equilibrium
- ▶ (Other conditions apply; see ECE4904 / ECE569A,B)

Since $n = N_D$, applying $np = n_i^2$ gives

Example

Example: $N_D = 1.0E+15$ atom/cm³; what are n, p?

Summary: Doping

- Intentionally unbalance n, p
- Donor: extra electron in valence band
- Acceptor: missing electron in valence band
- Majority carrier concentration
 Determined by doping
 NOT temperature dependent
- Minority carrier concentration
 Determined by np product relationship: np = n_i²
 Temperature dependent through n_i

Dopant	Concen-	Type of	Mobile e ⁻	Mobile hole
Туре	tration	Region	concentration <i>n</i>	concentration <i>p</i>
Donors				
Acceptors				

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

What is the Electric Field anyway?

- Vector
- Tells you force on a charge: $\overrightarrow{F} = Q\overrightarrow{E}$
- Direction positive charge would move
- Points from + to charge
- Keep track of charge conservation: Every field line starts on a + and must end on a -
- Related to voltage: units [V/cm]

E = -dV/dx

Related to charge: Poisson's Equation (1-D)

25 / 81

$$\frac{dE}{dx} = \frac{\rho}{\epsilon}$$

Poisson's Equation and Capacitance

Discretize
$$\frac{dE}{dx} = \frac{\rho}{\epsilon}$$

Summary: Electric Field, Capacitance

E field

- Tells you direction positive charge would move
- Points from + to charge
- Related to voltage: units [V/cm]
 E = -dV/dx
- Integral relationship:
- ► Related to charge: Poisson's Equation (1-D) $\frac{dE}{dx} = \frac{\rho}{\epsilon}$

・ロト ・屈 ト ・ 三 ト ・ 三 ・ つくの

27 / 81

Integral relationship:

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

Drift: Motion of charge carriers due to electric field

29/81

3

・ロン ・四 と ・ ヨ と ・ ヨ と

Mobility μ

 Mobility μ : Units, typical values

Terminology / Material Parameters

- Mean free time time time time between collisions
- Mean free path x_m Average distance between collisions
- Thermal velocity v_t = Xm/\(\tau_m\)
 Average velocity due to random thermal motion
- Thermal equilibrium Average energy in each independent mode of energy stoarge = kT/2
 - ► k Boltzmann's constant: 1.38E-23 J/K
 - *T* Absolute temperature in Kelvins
- *m*^{*} Carrier effective mass

Relating Mobility μ to Material Parameters

Mobility: Typical values

80 Chapter 2 = Bipolar, MOS, and BiCMOS Integrated-Circuit Technology

Figure 2.1 Hole and electron mobility as a function of doping in silicon.³

Summary: Mobility

- For charge carriers in a material
- Micro level:

Random thermal collisions Carrier accelerated by field between collisions

Macro level:

Average velocity due to electric field

- Mobility $\mu \ [cm^2/V \cdot sec]$
- Drift velocity $v = \mu E$

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	
Diffusion: Net motion of particles due to concentration gradient

□ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ Q (~ 37/81

Terminology / Material Parameters

Diffusion coefficient D

Diffusion: Net motion of particles due to concentration gradient

39 / 81

くぼう くほう くほう

Summary: Diffusion

- For any particles (charged or not)
- Micro level: Random thermal collisions
- Macro level:

Random motion smooths out concentration gradient Effect of diffusion is a net flow of particles opposite to gradient

- Diffusion coefficient D [cm²/sec]
- Particle flow per unit cross sectional area

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

PN Junction

Thought experiment:

Take isolated p-type, n-type regions and bring together

- 4 回 ト 4 回 ト 4 回 ト

42 / 81

PN Junction

Applied voltage $V_A = 0$ at time t=0.

PN Junction

Applied voltage $V_{A}=0$ equilibrium as time $t
ightarrow\infty$

PN Junction Current Components

Carrier motion: drift and diffusion for both holes and electrons

PN Junction Forward Bias (preview)

 $V_A > 0$ Applied V_A "overpowers" internal E field

PN Junction Reverse Bias (preview)

 $V_A < 0$ Applied V_A "reinforces" internal E field "Pulls" mobile carriers further apart

PN Junction: Electrostatics at equilibrium

48 / 81

PN Junction: Electrostatics at equilibrium

"Built-in" potential:

For zero applied bias, there exists a voltage ψ_0 across the junction called the *built-in* potential. This potential opposes the diffusion of mobile holes and electrons across the junction in equilibrium and has a value¹

$$\psi_0 = V_T \ln \frac{N_A N_D}{n_i^2} \tag{1.1}$$

where

$$V_T = \frac{kT}{q} \simeq 26 \text{ mV}$$
 at 300°K

Example: $N_A = 1E + 15atom/cm^3$, $N_D = 1E + 16atom/cm^3$

Summary: PN Junction at Equilibrium

- Depletion region
 Depleted of mobile carriers near junction
 Fixed charges (of other sign) "uncovered"
- Macro level: Zero net current
- Micro level:

Drift, diffusion current balance for holes and electrons

• Built-in potential ψ_0

Voltage across junction that opposes diffusion

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

PN Junction: Electrostatics, V_R reverse bias applied

PN Junction: Electrostatics, V_R reverse bias applied

Extent of Depletion Region (step junction):

$$W_1 = \left[\frac{2\epsilon(\psi_0 + V_R)}{qN_A\left(1 + \frac{N_A}{N_D}\right)}\right]^{1/2}$$
(1.14)

$$W_2 = \left[\frac{2\epsilon(\psi_0 + V_R)}{qN_D\left(1 + \frac{N_D}{N_A}\right)}\right]^{1/2}$$
(1.15)

Example: $N_A = 1E + 15atom/cm^3$, $N_D = 1E + 16atom/cm^3$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ (や 53 / 81

PN Junction: Capacitance

2 Chapter 1
Models for Integrated-Circuit Active Devices

For step junction

Use of (1.17) and (1.18) in (1.16) gives

$$C_j = A \left[\frac{q \epsilon N_A N_D}{2(N_A + N_D)} \right]^{1/2} \frac{1}{\sqrt{\psi_0 + V_R}}$$
(1.19)

イロト 不同下 イヨト イヨト

54 / 81

3

PN Junction Capacitance: General

Equations 1.20 and 1.21 were derived using the assumption of constant doping in the *p*-type and *n*-type regions. However, many practical diffused junctions more closely approach a *graded* doping profile as shown in Fig. 1.2. In this case, a similar calculation yields

$$C_{j} = \frac{C_{j0}}{\sqrt[3]{1 - \frac{V_{D}}{\psi_{0}}}}$$
(1.22)

Figure 1.2 Charge density versus distance in a graded junction.

3

55 / 81

PN Junction: Maximum Field at junction

2 Chapter 1
Models for Integrated-Circuit Active Devices

PN Junction: Reverse breakdown

Figure 1.4 Typical I-V characteristic of a junction diode showing avalanche breakdown.

Summary: PN Junction in Reverse Bias

- Depletion region
 Separation of +, charges: Acts as capacitance
 Junction capacitance depends on applied voltage
- DC current behavior
 Applied voltage reinforces built-in ψ₀
 "Turns off" diffusion current
 Small reverse current (nA to pA) flows due to drift
- Maximum value of E field at junction E_{max}
- Breakdown voltage
 When maximum field E_{max} exceeds critical value E_{crit} of semiconductor material
 Large reverse current flows

Module 1: Semiconductor Physics Review

Торіс	Reading
Bonding model, charge carriers	
Doping: p, n regions	
Fields review: E field, Capacitance	
Charge motion: Drift	
Charge motion: Diffusion	
PN junction: Equilibrium	
PN junction: Reverse Bias (capacitance)	1.1, 1.2
PN junction: Forward Bias (ideal diode equation)	

PN Junction Forward Bias $V_A > 0$

Applied V_A "overpowers" internal E field which opposed diffusion \Rightarrow Current components: Diffusion dominates

<ロ> <四> <四> <日> <日> <日</p>

PN Junction Forward Bias $V_A > 0$

"Law of the Junction": Applied V_A changes minority carrier concentration at edge of depletion region by factor $(e^{(V_A/V_T)} - 1)$

Ideal Diode Equation

$$I_D = qA\left(\frac{n_i^2}{N_A}\frac{D_n}{L_n} + \frac{n_i^2}{N_D}\frac{D_p}{L_p}\right)\left[e^{(V_A/V_T)} - 1\right]$$

Summary: PN Junction in Forward Bias

DC current behavior

Applied voltage subtracts from built-in ψ_0

Allows diffusion current to flow

"Law of the Junction":

- \Rightarrow Exponential increase in current
- Diffusion current dominates: driven by concentration gradient Preview: carrier motion in base region of bipolar transistor

63 / 81

- Ideal diode equation Note parts of equation due to
 - Junction geometry (cross-sectional area A)
 - Semiconductor material properties (n_i, N, D, L)
 - Applied voltage (V_A)

Module 2: Bipolar Transistor

Торіс	Reading
Construction	
Active Region operation (DC)	
Large signal model equations	1 3
Charge control model	1.5
Saturation, cutoff operating regions	
eta vs. operating condition	

Module 3: IC manufacturing technology for BJT

Торіс	Reading
Passive Components: Resistors	
Passive Components: Capacitors	
Passive Components : Inductors	2.1-7
BJT Parasitics	
Integrated vs. Discrete Design	

Module 4: SPICE modeling of BJT

Торіс	Reading	
DC parameters		
AC parameters	A 2 1 1 <i>1</i> 7	
Parasitic parameters	A.2.1, 1.4.7	
Modeling example: CA3096		

Module 5: BJT Modeling for Amplifier Design

Торіс	Reading
Large signal (DC) models	1.3
2-port amplifier model	
Small signal (ac, incremental) modeling	
Hybrid pi model	1 /
f_T frequency domain figure of merit	1.4
T model	
Use of models: DC bias, small signal gain, bandwidth	

Module 6: BJT Amplifiers (1T)

Торіс	Reading
Common Emitter	
Common Emitter with Degeneration	
Emitter Follower	212
Common Base	5.1-5
Summary of 1T BJT amplifiers	
Preview: Opportunities for Improvement	

Module 7: BJT Amplifiers (2T)

Topic	Reading
Darlington	31
Cascode	5.4

Module 8: Differential Pair

Торіс	Reading
Motivation and configuration (op-amp input stage)	
DC transfer characteristic	
Half-circuit analysis	
Differential mode behavior	
Common mode behavior	3.5
Differential Pair with Emitter Degneration	
Mismatch in Differential Pair: Offset voltage	
CM-to-DM conversion	
Preview: Opportunities for Improvement	

Module 9. Current Sources

Торіс	Reading
Motivation	
Simple Current Mirror	
Current Mirror with Beta helper	4.1, 4.2
Degeneration	
Cascode	A.4.1
Wilson	
Summary of current sources	

Module 10. Active Loads

Торіс	Reading
Motivation	
Common-Emitter with Current Source Load	13
Differential Pair with Mirror Load	4.5
Summary of active load techniques	
Module 11. Output Stages

Торіс	Reading
Motivation	
Emitter Follower	
DC Transfer Characteristics	
Efficiency Considerations	51/
Push-pull output stage	J.1-4
DC Transfer Characteristic / Dead Zone distortion	
Class AB output	
Overload Protection	

Module 12. Biasing

Торіс	Reading
Widlar source	
Supply Insensitive Biasing	4.4
Bandgap voltage reference	

Module 13. Basic Op-Amp Design (single-ended output)

Торіс	Reading
Motivation	
Op-Amp nonidealities	
Basic BJT Op-amp and design evolution	
Increase gain of input differential stage	
Current Source Biasing	61 62 68
Use of active load	0.1, 0.2, 0.0
Push pull, class AB output stage	
Stage-to-stage coupling, buffering	
Systematic Offset issues	
Basic Op-Amp design Summary	

Module 14. Frequency response issues

Торіс	Reading
Transfer function; pole-zero review	
Common Emitter Amplifier	
Miller effect	
Emitter follower frequency response	715
Common Base frequency response	1.1-5
Cascode frequency response	
Differential Amplifier frequency response	
Frequency response summary	

Module 15. Feedback

Торіс	Reading
Advantages of Negative Feedback	8.1-3
Feedback Configurations	

Module 16. Op-Amp Stability

Торіс	Reading
Gain-Bandwidth relationship	
Stability Criteria	
Phase Margin	
Op-Amp Compensation	014 06
Dominant Pole / Miller Integrator Compensation	9.1-4, 9.0
Slew Rate Limiting	
Example Design: Stability of 3-stage BJT Op-Amp	
Stability Summary	

Module 17. MOSFET Op-Amp Design

Торіс	Reading
MOS Construction	2.8-11
MOS Operation	150
MOS Modeling	1.5-9
MOS-BJT Comparison	3.3-5, 4.2, 4.4, A.4.1
MOS Op-amp design example	6.3-7
Compensation for MOS Op-amp	01 06
MOS Op-amp Summary	ט.פ, ש.ט

Module 18. Fully Differential Op-amps

Торіс	Reading
Differential mode operation	
Need for Common Mode Feedback (CMFB)	
CMFB Techniques	12.1-6
Design Example	
Fully Differential Op-amp Summary	

Module 19. Advanced / Optional Topics

Торіс	Reading
Noise	11.1-9
Current Feedback Op-Amp	
Analog Multiplier	10 1 10 2
Gilbert Cell	10.1, 10.2
Student requested	